Homework of Week 3

Deadline: 9:00am, November 10 (Sunday), 2019

- 1. Let $X_1, ..., X_n$ be independent random variables on [0, 1]. let $X = \sum_{i=1}^n X_i$ and $\mu = \mathbb{E}[X]$. Then the following Chernoff bound holds: for any $\delta > 0$, $\Pr(X \ge (1+\delta)\mu) \le (\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}})^{\mu}$. Also prove a similar bound for the probability $\Pr(X \le (1-\delta)\mu)$ for any $0 < \delta < 1$. (Hint: use $e^{\lambda x} \le xe^{\lambda} + (1-x)$)
- 2. The set balancing problem aims at dividing the data into two groups that are balanced in every feature. If the objective is not balanced but 1:2 in every feature, the vector b should be chosen from $\{-1,2\}^m$. Please adapt the algorithm and analyze the performance.
- 3. Do Bernoulli experiment for 20 trials, using a new 1-Yuan coin. Record the result in a string $s_1s_2...s_i...s_{20}$, where s_i is 1 if the i^{th} trial gets Head, and otherwise is 0.