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1The slides are mainly based on Introductory Lecture Notes on Markov
Chains And Random Walks by Takis Konstantopoulos.

1 / 25



Preface

Questions, comments, or suggestions?
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A recap of Lovász local lemma

Mission

Do events A1, ...An satisfy Pr(
⋃n

i=1Ai) < 1?

Symmetric version: Pr(
⋃n

i=1Ai) < 1 when

edp ≤ 1 for all i, with p = maxi Pr(Ai), d = maxi |Γ(Ai)|

Asymmetric version: Pr(
⋃n

i=1Ai) < 1 when

∀i,
∑

Aj∈Γ(Ai)
Pr(Aj) ≤ 1

4 , or

∃x1, ...xn ∈ (0, 1) s.t. ∀i,Pr(Ai) ≤ xi
∏

Aj∈Γ(Ai)(1− xj)
Shearer’s bound is tight

Moser-Tardos algorithm is efficient up to Shearer’s bound

3 / 25



An overall review of probabilistic method

Handling dependence, exploiting independence

Counting (union bound): mutually exclusive

First moment: linearity doesnt care dependence

Second moment: pairwise dependence

LLL: global dependence

Continue this trend in stochastic process
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Markov Chains

Informal definition

A mathematical model of a random phenomenon evolving with
time such that the past affects the future only through the present

Time can be discrete or continuous (Markov process)

Debut of the concept of Markov chains

Andrey Markov. Extension of the law of large numbers to
dependent quantities, Izvestiia Fiz.-Matem. Obsch. Kazan Univ.,
(2nd Ser.), 15(1906), pp. 135-156

From an individual to a sequence of random variables

Asymptotical behavior matters
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Andrey Andreyevich Markov
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Example: a mouse in cage

Behavior of the mouse (transition diagram): α = 0.05, β = 0.99
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Example: a mouse in cage

Behavior of the mouse (transition matrix)

Interesting questions

How long does it take for the mouse, on the average, to move
from cell 1 to cell 2?

Easy to solve due to the geometric distribution

How often is the mouse in room 1?

Hard to answer it in one minute
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Example: insurance company’s puzzle

Human health on a monthly basis

Transition matrix

P =

0.69 0.3 0.01
0.8 0.1 0.1
0 0 1


What is the distribution of the lifetime of a currently healthy one?
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Formal definition of Markov Chains

General setting

A sequence of random variables {Xn : n ∈ N}
For all n, Xn is defined on the same state space S

Any s ∈ S is called a state

Markov property

Pr(Xn+1 = xn+1|Xn = xn, ...X0 = x0) = Pr(Xn+1 = xn+1|Xn =
xn), for any n ∈ N and x0, ...xn ∈ S.
The future is independent of the past, given the present state

Homogeneous

Pr(Xn+1 = y|Xn = x) is independent of n, denoted by pxy

Focus on homogeneous Markov chains
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Representation of a Markov chain

Transition diagram

Weighted directed graph G = (V,E,W )

V = S, the state space

eij ∈ E if and only if pij , Pr(Xt = j|Xt−1 = i) > 0

W : eij 7→ pij

This provides intuition

Example: state reachability is reachability over the graph

Transition matrix

P = (pij)i,j∈S , all entries are nonnegative,
∑

j pij = 1
This enables calculation

Example: P (n) = Pn, where P (n) = (p
(n)
ij )i,j∈S ,

p
(n)
ij , Pr(Xn = j|X0 = i)
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Multistep transition matrix

P (n) = Pn

Proof by induction on n.

Remark: a summand of p
(n)
ij corresponds to a path from i to j

whose length is n

State distribution at time t

Given initial distribution π, π(t) = πP (t) = πP t
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Interesting questions

Can a state j be reached from i?

If yes, when?

What’s the state distribution at any t?

What’s the distribution in the long run (average frequency)?
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Reachability

Equivalent conditions of reaching j from i

There is a directed path in G from i to j

p
(n)
ij > 0 for some n

Denoted by i j

Communicating states

i! j if i j and j  i
Communicating classes: equivalence classes of !

Strongly connected components of G

14 / 25



Period

The life style of a pig

p
(n)
ii > 0 only if n is even. It is periodic

The period of state i of a Markov chain

di is the GCD of Di , {n ≥ 1 : p
(n)
ii > 0}.

If di = 1, i is said to be aperiodic
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Communicating states have the same period

Theorem

If i! j, then di = dj

Proof

Since i! j, p
(s)
ij > 0 and p

(t)
ji > 0 for some s, t > 0

p
(s+t)
ii ≥ p(s)

ij p
(t)
ji > 0, so di divides s+ t

For any n ∈ Dj , p
(s+n+t)
ii ≥ p(s)

ij p
(n)
jj p

(t)
ji > 0, so di divides

s+ n+ t

Since di divides s+ t, di divides n

di divides dj

Symmetrically, dj divides di

dj = di
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Nonzero multi-step transition probability of aperiodic states

Theorem

If i is aperiodic, p
(n)
ii > 0 for all large enough n

Proof

Choose n1, n2 ∈ Di s.t. n2 − n1 = 1

For any n, there are integers q and r < n1 s.t. n = qn1 + r

n = qn1 + r(n2 − n1) = (q − r)n1 + rn2

When n is large enough, q − r > 0

p
(n)
ii ≥

(
p

(n1)
ii

)q−r (
p

(n2)
ii

)r
> 0
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Hitting time

Definition

Tij : the first time that j is reached when the initial state is i

f
(n)
ij , Pr(Tij = n) = Pr(Xn = j,Xk 6= j, 1 ≤ k < n|X0 = i)

fij ,
∑

n f
(n)
ij

Recurrency

If fii = 1, the state i is recurrent (otherwise, transient)

Furthermore, if E[Tii] <∞, i is positive recurrent

Otherwise, it is null recurrent

Example

Human health chain, pig life style chain, and more
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Decision theorem of recurrency

The following conditions are equivalent

1 i is recurrent

2
∑

n p
(n)
ii =∞

3 E[Ji|X0 = i] =∞, Ji is the number of times i is reached

4 Pr(Ji =∞|X0 = i)=1

Proof: 2⇔3

Ji =
∑
n
1(Xn = i)

E[Ji|X0 = i] = E[
∑
n
1(Xn = i)|X0 = i]

=
∑
n

Pr(Xn = i|X0 = i)

=
∑
n
p

(n)
ii
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Proof (continued)

1⇒ 4

Let J
(l)
i be the times of reaching i no earlier than step l

Property: Ji = J
(1)
i

gii , Pr(Ji =∞|X0 = i) = lim
k

Pr(J
(1)
i ≥ k|X0 = i)

(J
(1)
i ≥ k + 1|X0 = i) = ∪l(Tii = l, J

(l+1)
i ≥ k|X0 = i)

Pr(J
(1)
i ≥ k + 1|X0 = i) = fii Pr(J

(1)
i ≥ k|X0 = i) = fk+1

ii

gii = limk f
k
ii = 1 since i is recurrent

4⇒ 3

Trivial
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Proof: 2⇒ 1

Chapman-Kolmogorov equation:

p
(n)
ij =

∑n
k=1 f

(k)
ij p

(n−k)
jj , p

(0)
ii = 1

For any N ,∑N
n=1 p

(n)
ii =

∑N
n=1

∑n
k=1 f

(k)
ii p

(n−k)
ii

=
∑N

k=1 f
(k)
ii

∑N
n=k p

(n−k)
ii

=
∑N

k=1 f
(k)
ii

∑N−k
n=0 p

(n)
ii

≤
∑N

k=1 f
(k)
ii

∑N
n=0 p

(n)
ii

∑N
n=1 p

(n)
ii

1+
∑N

n=1 p
(n)
ii

=
∑N

n=1 p
(n)
ii∑N

n=0 p
(n)
ii

≤
∑N

k=1 f
(k)
ii ≤ fii ≤ 1

Since
∑N

n=1 p
(n)
ii =∞, the lefthand side → 1 as N →∞

fii = 1, so i is recurrent
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Recurrency is preserved by communicating relation

Theorem

If i! j and i is recurrent, then so is j

Prove

It immediately follows from the above theorem
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A necessary condition of transient states

Theorem

If j is a transient,
∑∞

n=1 p
(n)
ij <∞ for any i

Proof

p
(n)
ij =

∑n
k=1 f

(k)
ij p

(n−k)
jj , p

(0)
ii = 1

For any N ,∑N
n=1 p

n
ij =

∑N
n=1

∑n
k=1 f

(k)
ij p

(n−k)
jj

=
∑N

k=1

∑N
n=k f

(k)
ij p

(n−k)
jj

=
∑N

k=1 f
(k)
ij

∑N−k
n=0 p

(n)
jj

≤
∑N

k=1 f
(k)
ij

∑N
n=0 p

(n)
jj∑N

n=1 p
(n)
ij ≤

∑N
n=0 p

(n)
jj ≤ 1 +

∑N
n=1 p

(n)
jj <∞
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Positive recurrency

Any rule for deciding if a state is positive recurrent?

How to compute the expected hitting time of a positive recurrent
state?

24 / 25



Reference

Introductory Lecture Notes on Markov Chains And Random
Walks by Takis Konstantopoulos

Baidu Wenku
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