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Basic concepts of Markov chains

Definition

A stochastic process which has the Markov perperty

Time homogeneous

Representations

Transition diagram: weighted directed graph
Transition matrix: P = (pij)i,j∈S

Reachability

Period
Hitting time Tij

f
(t)
ij , Pr(Tij = t), fij ,

∑
t f

(t)
ij
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Classification of states

Definition

Transient if fii < 1, otherwise recurrent
Positive recurrent if E[Tii] <∞, otherwise null recurrent

Equivalient definitions of recurrent states∑
n p

(n)
ii =∞

E[Ji|X0 = i] =∞, Ji is the number of times i is reached
Pr(Ji =∞|X0 = i)=1

Corollary

If i! j and i is recurrent, then so is j
Cool! Counterpart of positive recurrent? See excursions...
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Excursions: independent structure in Markov chains

If a Markov chain {Xt} visits state i again and again

Hitting times

Ti = T
(1)
i = min{t > 0 : Xt = i}

T
(r)
i = min

{
t > T

(r−1)
i : Xt = i

}
Excursion: trajectory between two successive visits to state i

χ
(r)
i =

{
Xt : T

(r)
i ≤ t < T

(r+1)
i

}
, r ≥ 1

χ
(0)
i =

{
Xt : 0 ≤ t < T

(1)
i

}
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Excursions are i.i.d. random variables

Theorem

χ
(r)
i , r ≥ 0, are independent

χ
(r)
i , r ≥ 1, have the same distribution

Proof

It follows from the strong Markov property

Remark

Dependence is annoying, but excursions decouple the chain
into independent blocks
The independent structure means so much ...
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Revisiting positive recurrent states

Theorem

If i! j and i is positive recurrent, then so is j

Proof

i is positive recurrent, so there are infinitely many excursions

The length of χ
(r)
i : T

(r+1)
i −T (r)

i = Tii with finite expectation
Since i j, starting from i,
p =Pr(reach j before returning to i) > 0

For each r > 0, j appears in χ
(r)
i with probability p > 0

Pr(j is reached)=1. Wlog., j is first reached in χ
(0)
i

R s.t. j is reached next in χ
(R)
i ? Geometric distribution

Tjj ≤ RTii ⇒ j is positive recurrent (by Wald’s equation)

Wow! One more example
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Law of large number in Markov chains

Law of large number

For i.i.d. r.v. {Xn}, Pr(limn→∞
X1+···Xn

n = E[X1]) = 1

What if Xn’s are states of a Markov chain?

Law of large number in Markov Chains

Assume Markov chain {Xn} has a positive recurrent state a,
Pr(a is reached|X0)=1, and f : S → R is bounded. Then

Pr

(
lim
t→∞

f(X0) + · · ·f(Xt)

t
= f̄

)
= 1

where

f̄ =
E
[∑

n∈χ(1)
a
f(Xn)

]
E[Taa]

= Eπ[f ]
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Proof

Basic idea

Break the sum into subsum over excursions, reducing to law of
large number of i.i.d. r.v.

Nt = max{r ≥ 1 : T
(r)
a ≤ t}: # a-excursions occurring in [0, t]

Nt = 5 in this example

Irregular parts vanish

Full excursions are i.i.d. with expectation f̄ =
E
[∑

n∈χ(1)a
f(Xn)

]
E[Taa]
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Stationary Distribution

Motivation

1 Given a positive recurrent state i, how to calculate E[Tii]?

2 If t is sufficiently large, what is the distribution of Xt?

Definition

A distribution π over S satisfying πP = π is a stationary
distribution of the Markov chain.

Fundamental Problems

1 Given a Markov chain, does it have a stationary distribution?

2 Is the stationary distribution unique?

3 How to calculate it?
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An example

Waiting for a bus

When a bus arrives, Pr(the next arrives in i minutes)= p(i)
Xt: the time till the arrival of the next bus
Transition probability: pi,i−1 = 1, p0,i = p(i), i ≥ 1

If a stationary distribution π exists

It holds that π(i) =
∑

j≥0 π(j)pj,i = π(0)p(i) + π(i+ 1)
This implies π(i) = π(0)

∑
j≥i p(j)

Since
∑

i≥0 π(i) = 1, we have π(0) = (
∑

i≥0
∑

j≥i p(j))
−1

The stationary distribution exists iff
∑

i≥0
∑

j≥i p(j) < +∞∑
i≥0
∑

j≥i p(j) =
∑

j≥0
∑

0≤i≤j p(j)
=
∑

j≥0(j + 1)p(j) = E[T00]
The stationary distribution exists iff 0 is positive recurrent

Is this correct in general?

Yes!
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Existence Theorem of Stationary Distribution

Assume that a is a recurrent state. For any state x, define

ν[a](x) = E
[∑Taa−1

n=0 1(Xn = x)|X0 = a
]
.

Lemma

ν[a] = ν[a]P .
For any state x s.t. a x, we have 0 < ν[a](x) < +∞.

Theorem of existence

If the Markov chain has a positive recurrent state a, π[a] , ν[a]

E[Taa]
is a stationary distribution.

Proof of the theorem

It immediately follows from the lemma
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The Stationary Distribution is not Necessarily Unique

Consider the Markov chain

States 0 and 2 are positive recurrent, so stationary
distributions exist

For any 0 ≤ α ≤ 1, π = (α, 0, 1− α) is a stationary
distribution. Not Unique!

Note that the chain is reducible

Does this cause the non-uniqueness?

Yes!
17 / 39
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Uniqueness Theorem

Theorem of uniqueness

For an irreducible Markov chain, its stationary distribution is
unique if existent

Actually, when irreducible, if a stationary distribution π exists

πiE[Tii] = 1 for every state

All states must be positive recurrent

Any Markov chain with stationary distribution π

πj = 0 if j is transient

j is positive recurrent if πj > 0
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Calculating Expected Return Time

When irreducible, π(i) = 1
E[Tii] for any i.

Calculating E[Tii] is reduced to calculating the stationary
distribution.

But how to calculate the stationary distribution?
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Stability Theorem

Theorem of stability

Let π be the stationary distribution of an irreducible and ergodic
(positive recurrent, aperiodic) Markov chain. Then

1 limn→∞ Pr(Xn = x) = π(x) for any initial distribution and
any x ∈ S;

2 limn→∞ p
(n)
yx = π(x) for any x, y ∈ S.

Remarks

Approximating by iteratively computing
Each row of P (n) converges to π

Though
∑

n p
(n)
yx = +∞ when x is recurrent

limn→∞ p
(n)
yx > 0 if x is positive recurrent

limn→∞ p
(n)
yx = 0 if x is null recurrent
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Sub-summary: fundamental theorems of Markov chains

Existence Uniqueness Stability

Positive recurrency Irreducibility Aperiodicity · · ·

π[a](i) =
E

[
Taa∑
n=1

1(Xn=i)|X0=a

]
E[Taa] π = π[a] limn→∞ p

(n)
ji = π(i)

Are the conditions necessary?
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Positive Recurrency is Necessary for Existence

Theorem

If a Markov Chain has a stationary distribution π, then any state i
with π(i) > 0 is positive recurrent.
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Does uniqueness imply irreducibility?

No!

However

It is weakly irreducible:
only one communicating class of positive recurrent states

Theorem

If a Markov chain has a unique stationary distribution, it has a
unique communicating class of positive recurrent states
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No Aperiodicity, No Stability

Consider the Markov chain with period 2.

p
(2k)
11 = 1, but p

(2k−1)
11 = 0. So, limn→∞ p

(n)
11 does not exist.

Generally, in case of period d, does limn→∞ p
(nd)
jj exist?

If existent, what’s it?

Yes!
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The Normal Form of Periodic Markov Chain

Normal form theorem

Given an irreducible Markov chain with period d, the state space S
can be uniquely partitioned into disjoint sets C0, C1, ...Cd−1 such
that

∑
j∈Cr+1 mod d

pij = 1 for i ∈ Cr, r = 0, 1, ...d− 1.

limn→∞ p
(r+nd)
ij

= dπ(j) = d
E[Tjj ]
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Sub-summary: fundamental theorems of Markov chains

Existence Uniqueness Stability

Positive recurrency Irreducibility Aperiodicity · · ·

π[a](i) =
E

[
Taa∑
n=1

1(Xn=i)|X0=a

]
E[Taa] π = π[a] limn→∞ p

(n)
ji = π(i)

All the conditions are (weakly) necessary!
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By stability theorem

Compute iteratively or approximate by limits

By definition

Solve the linear equation system π = πP ,
∑

i∈S π(i) = 1

Flow balance theorem
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Flow balance theorem

Flow balance

Let A ⊆ S be a set of the states of a Markov chain, and π be a
distribution over S. Define F (A,Ac) =

∑
i∈A,j∈Ac π(i)pij .

Theorem

π is a stationary distribution if and only if F (A,Ac) = F (Ac, A)
for all A ⊆ S.

Proof

(⇐) Prove by considering singletons A.
(⇒) Observe that πi

∑
j pij = πj

∑
j pji.

29 / 39



A recap of Lecture 11
Excursions

Stationary Distribution
Calculation of Stationary Distribution
Applications of Stationary Distribution

Example

Walk with a barrier

Find the stationary distribution by definition

π(i) = pπ(i− 1) + qπ(i+ 1) for all i > 0.

By flow balance theorem

For any i > 0, let A = {0, 1, ...i− 1}
π(i− 1)p = F (A,Ac) = F (Ac, A) = π(i)q
π(i) = (p/q)iπ(0)
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Application

Natural language processing

A fundamental problem: Computing the probability that a sentence
appears. The computation is made possible by Markov hypothesis.

PageRank

Task: Assign importance to web pages.
Model: Web graph consists of linked pages. A typical process of
surfing the Web is to follow links and randomly jump in case of
dangling. So we get a Markov chain with transition probability

p̂ij =


1/|L(i)| if j ∈ L(i)
1/|V | if L(i) = ∅
0 otherwise

To guarantee irreducibility and aperiodicity, use bored surfer style.
Namely pij , (1− α)p̂ij + α

|V | .
The stationary distribution is the rank. Compute iteratively.
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Random Walks on Undirected Graphs

Random walks

Let G = (V,E) be a finite, undirected, and connected graph. A
random walk on G is a Markov chain with puv = 1

du
for (u, v) ∈ E

Period

A random walk on G is aperiodic iff G is not k-partite

Stationary distribution

Stationary distribution of a random walk on G: π(v) = d(v)
2|E| .

So, expected return time huu , E[Tuu] = 2|E|
d(u) .
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Expected Hitting Time and Cover Time

Claim: If (u, v) ∈ E, then hvu < 2|E|.
Proof: Use the fact that 2|E|

d(u) = huu = 1
d(u)

∑
v∈N(u)(1 + hvu).

Cover time

Claim: The cover time of G = (V,E) is no more than 4|V | · |E|.
Proof: Explore the Eulerian tour on a spanning tree of G. The
expected time to go through the vertices v0, v1, ...v2|V |−2 = v0
upper bounds the cover time.
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Parrondo’s Paradox (since 1996)

A question that seems silly at the first glance

Can you combine two losing games to get a winning one?
Yes!

The magic example

Game G1: flip coin a with head probability pa <
1
2 . You win a

dollar if you get Head, otherwise lose a dollar.
Game G2: Let l be the number of losses so far and w be that
of wins. You have coins b and c. Flip b if w − l = 0(mod 3),
and flip c otherwise. You win a dollar if you get Head,
otherwise lose a dollar.
Game G3: repeatedly flip a fair coin d. If you get Head,
proceed as in game G1; otherwise proceed to G2.

When pa = 0.49, pb = 0.09, pc = 0.74, A and B are losing games
while C is a winning one.
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An intuitive interpretation

Both cases get a tie

In both cases, B wins

If the cases appear
alternately, A can win

Randomness is not necessary

G′1: lose 1. G′2: lose 5 for odd capital, win 3 otherwise.
G′3: Play alternatively, beginning with G′2
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Why?

The difficulty lies in analyzing G2

Try to determine the relative probability of reaching −3 or +3
first, or study the probability of wins in stationary distribution.

Game G3 is like G2, except that the head probabilities are slightly
different.
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Thank you! Happy the year of pig!

39 / 39


	A recap of Lecture 11
	Excursions
	Stationary Distribution
	Calculation of Stationary Distribution
	Applications of Stationary Distribution

