Probabilistic Method and Random Graphs Lecture 12. Excursions, Stationary Distributions, and Applications of Markov Chains¹

Xingwu Liu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

January 6, 2020

 1 The slides are mainly based on Introductory Lecture Notes on Markov Chains And Random Walks by Takis Konstantopoulos and Lecture Notes of Stochastic Processes by Glen Takahara.メロメ メ都メ メ君メ メ君メ

 $2Q$

Questions, comments, or suggestions?

[Calculation of Stationary Distribution](#page-26-0)

[Applications of Stationary Distribution](#page-30-0)

メロト メタト メミト メミト 一番

[A recap of Lecture 11](#page-3-0)

[Excursions](#page-6-0) [Stationary Distribution](#page-12-0) [Calculation of Stationary Distribution](#page-26-0) [Applications of Stationary Distribution](#page-30-0)

1 [A recap of Lecture 11](#page-3-0)

- **[Excursions](#page-6-0)**
- **3** [Stationary Distribution](#page-12-0)
- 4 [Calculation of Stationary Distribution](#page-26-0)
- 5 [Applications of Stationary Distribution](#page-30-0)

4 / 39

 209

メロメ メ御き メミメ メミメ

[A recap of Lecture 11](#page-3-0)

[Excursions](#page-6-0) [Stationary Distribution](#page-12-0) [Calculation of Stationary Distribution](#page-26-0) [Applications of Stationary Distribution](#page-30-0)

Basic concepts of Markov chains

Definition

- A stochastic process which has the Markov perperty
	- **•** Time homogeneous

Representations

- Transition diagram: weighted directed graph
- **•** Transition matrix: $P = (p_{ij})_{i,j \in S}$

Reachability

- **•** Period
- Hitting time T_{ij}

$$
\bullet \ \ f_{ij}^{(t)} \triangleq \Pr(T_{ij} = t), f_{ij} \triangleq \sum_{t} f_{ij}^{(t)}
$$

Ε

K ロ ト K 部 ト K 差 ト K 差 ト

[A recap of Lecture 11](#page-3-0)

[Excursions](#page-6-0) [Stationary Distribution](#page-12-0) [Calculation of Stationary Distribution](#page-26-0) [Applications of Stationary Distribution](#page-30-0)

Classification of states

Definition

- Transient if f_{ii} < 1, otherwise recurrent
- Positive recurrent if $\mathbb{E}[T_{ii}] < \infty$, otherwise null recurrent

Equivalient definitions of recurrent states

$$
\bullet \sum_{n} p_{ii}^{(n)} = \infty
$$

 $\overline{\mathbb{E}[J_i|X_0=i]} = \infty$, J_i is the number of times i is reached

$$
\bullet \ \mathsf{Pr}(J_i=\infty|X_0=i){=}1
$$

Corollary

- If i \leftrightarrow j and i is recurrent, then so is j
- Cool! Counterpart of positive recurrent? See excursions...

K ロト K 御 ト K 君 ト K 君 ト

1 [A recap of Lecture 11](#page-3-0)

2 [Excursions](#page-6-0)

- **3** [Stationary Distribution](#page-12-0)
- 4 [Calculation of Stationary Distribution](#page-26-0)
- 5 [Applications of Stationary Distribution](#page-30-0)

7 / 39

 209

 \equiv

メロメ メ御き メミメ メミメ

Excursions: independent structure in Markov chains

Hitting times

•
$$
T_i = T_i^{(1)} = \min\{t > 0 : X_t = i\}
$$

\n• $T_i^{(r)} = \min\{t > T_i^{(r-1)} : X_t = i\}$

Excursion: trajectory between two successive visits to state i

•
$$
\chi_i^{(r)} = \left\{ X_t : T_i^{(r)} \le t < T_i^{(r+1)} \right\}, r \ge 1
$$

• $\chi_i^{(0)} = \left\{ X_t : 0 \le t < T_i^{(1)} \right\}$

 209 8 / 39

Ξ

Excursions are i.i.d. random variables

Theorem

- $\chi^{(r)}_i$ $\zeta^{(r)}_{i}, r\geq 0$, are independent
- $\chi^{(r)}_i$ $i^{(r)}, r \geq 1$, have the same distribution

Proof

It follows from the strong Markov property

Remark

- Dependence is annoying, but excursions decouple the chain into independent blocks
- The independent structure means so much ...

Revisiting positive recurrent states

Theorem

If $i \leftrightarrow j$ and i is positive recurrent, then so is j

Proof

- \bullet *i* is positive recurrent, so there are infinitely many excursions
- The length of $\chi^{(r)}_i$ $\hat{u}^{(r)}_i:T_i^{(r+1)}-T_i^{(r)}=T_{ii}$ with finite expectation
- Since $i \rightsquigarrow j$, starting from i, $p = Pr(\text{reach } j \text{ before returning to } i) > 0$
- For each $r>0$, j appears in $\chi^{(r)}_i$ with probability $p>0$
- Pr $(j$ is reached)=1. Wlog., j is first reached in $\chi^{(0)}_i$ i
- R s.t. j is reached next in $\chi^{(R)}_i$ $i^{(R)}$? Geometric distribution
- \bullet $T_{ij} \le RT_{ii} \Rightarrow j$ is positive recurrent (by Wald's equation)

Wow! One more example

Law of large number in Markov chains

Law of large number

For i.i.d. r.v.
$$
\{X_n\}
$$
, $Pr(\lim_{n\to\infty} \frac{X_1 + \cdots X_n}{n} = \mathbb{E}[X_1]) = 1$

What if X_n 's are states of a Markov chain?

Law of large number in Markov Chains

Assume Markov chain $\{X_n\}$ has a positive recurrent state a, $Pr(a \text{ is reached} | X_0) = 1$, and $f : S \to \mathbb{R}$ is bounded. Then

$$
\Pr\left(\lim_{t\to\infty}\frac{f(X_0)+\cdots f(X_t)}{t}=\bar{f}\right)=1
$$

where

$$
\bar{f} = \frac{\mathbb{E}\left[\sum_{n \in \chi_a^{(1)}} f(X_n)\right]}{\mathbb{E}[T_{aa}]} = \mathbb{E}_{\pi}[f]
$$

 Ω 11 / 39

Proof

Basic idea

Break the sum into subsum over excursions, reducing to law of large number of i.i.d. r.v.

 $N_t = \max\{r \geq 1 : T_a^{(r)} \leq t\}$: # a -excursions occurring in [0, t]

 $N_t = 5$ in this example

Irregular parts vanish Full excursions are i.i.d. with expectation $\bar{f} = \frac{\mathbb{E}\left[\sum_{n \in \chi_n^{(1)}} f(X_n)\right]}{\mathbb{E}[T_{n-1}]}$ $\overline{\mathbb{E}[T_{aa}]}$ $\overline{\mathbb{E}[T_{aa}]}$ $\overline{\mathbb{E}[T_{aa}]}$

 Ω 12 / 39

1 [A recap of Lecture 11](#page-3-0)

[Excursions](#page-6-0)

- 3 [Stationary Distribution](#page-12-0)
- 4 [Calculation of Stationary Distribution](#page-26-0)
- 5 [Applications of Stationary Distribution](#page-30-0)

13 / 39

 Ω

Ξ

メロメ メ御き メミメ メミメ

Stationary Distribution

Motivation

O Given a positive recurrent state i, how to calculate $\mathbb{E}[T_{ii}]$?

2 If t is sufficiently large, what is the distribution of X_t ?

Definition

A distribution π over S satisfying $\pi P = \pi$ is a stationary distribution of the Markov chain.

Fundamental Problems

- **1** Given a Markov chain, does it have a stationary distribution?
- 2 Is the stationary distribution unique?
- **3** How to calculate it?

(A) (B) (B)

 \leftarrow

An example

Waiting for a bus

- When a bus arrives, Pr(the next arrives in i minutes)= $p(i)$
- X_t : the time till the arrival of the next bus
- Transition probability: $p_{i,i-1} = 1, p_{0,i} = p(i), i ≥ 1$

If a stationary distribution π exists

- It holds that $\pi(i) = \sum_{j \geq 0} \pi(j) p_{j,i} = \pi(0) p(i) + \pi(i+1)$ This implies $\pi(i) = \pi(0) \sum_{j \geq i} p(j)$
- Since $\sum_{i\geq 0} \pi(i) = 1$, we have $\pi(0) = (\sum_{i\geq 0} \sum_{j\geq i} p(j))^{-1}$
- The stationary distribution exists iff $\sum_{i\geq 0} \sum_{j\geq i} \widetilde{p(j)} < +\infty$
 $\sum_{i\geq 0} \sum_{j\geq i} \widetilde{p(j)} = \sum_{i\geq 0} \sum_{0\leq i\leq i} p(j)$

$$
\begin{aligned} \bullet \ \sum_{i \geq 0} \sum_{j \geq i} p(j) &= \sum_{j \geq 0} \sum_{0 \leq i \leq j} p(j) \\ &= \sum_{j \geq 0} (j+1)p(j) = \mathbb{E}[T_{00}] \end{aligned}
$$

 \bullet The stationary distribution exists iff 0 is positive recurrent

Is this correct in general?

Yes!

Existence Theorem of Stationary Distribution

Assume that a is a recurrent state. For any state x , define $\nu^{[a]}(x) = \mathbb{E}\left[\sum_{n=0}^{T_{aa}-1} \mathbf{1}(X_n = x)|X_0 = a\right].$

Lemma

$$
\nu^{[a]} = \nu^{[a]} P.
$$

For any state x s.t. $a \leadsto x$, we have $0 < \nu^{[a]}(x) < +\infty$.

Theorem of existence

If the Markov chain has a positive recurrent state a , $\pi^{[a]} \triangleq \frac{\nu^{[a]}}{\mathbb{E}[T_{aa}]}$ is a stationary distribution.

Proof of the theorem

It immediately follows from the lemma

The Stationary Distribution is not Necessarily Unique

• Consider the Markov chain

- States 0 and 2 are positive recurrent, so stationary distributions exist
- For any $0 \le \alpha \le 1$, $\pi = (\alpha, 0, 1 \alpha)$ is a stationary distribution. Not Unique!
- Note that the chain is reducible
- Does this cause the non-uniqueness?
- Yes!

Uniqueness Theorem

Theorem of uniqueness

For an irreducible Markov chain, its stationary distribution is unique if existent

Actually, when irreducible, if a stationary distribution π exists

- $\bullet \pi_i \mathbb{E}[T_{ii}] = 1$ for every state
- All states must be positive recurrent

Markov chain with stationary distribution π

- $\bullet \ \pi_i = 0$ if j is transient
- *i* is positive recurrent if $\pi_i > 0$

Calculating Expected Return Time

When irreducible,
$$
\pi(i) = \frac{1}{\mathbb{E}[T_{ii}]}
$$
 for any i .

Calculating $\mathbb{E}[T_{ii}]$ is reduced to calculating the stationary distribution.

But how to calculate the stationary distribution?

B Ω 19 / 39

Stability Theorem

Theorem of stability

Let π be the stationary distribution of an irreducible and ergodic (positive recurrent, aperiodic) Markov chain. Then

1 $\lim_{n\to\infty} \Pr(X_n = x) = \pi(x)$ for any initial distribution and any $x \in S$;

$$
\text{Q } \lim_{n \to \infty} p_{yx}^{(n)} = \pi(x) \text{ for any } x, y \in S.
$$

Remarks

- **Approximating by iteratively computing**
- Each row of $P^{(n)}$ converges to π

• Though
$$
\sum_n p_{yx}^{(n)} = +\infty
$$
 when *x* is recurrent

 $\lim_{n\to\infty}p^{(n)}_{yx}>0$ if x is positive recurrent

•
$$
\lim_{n\to\infty} p_{yx}^{(n)} = 0
$$
 if x is null recurrent

Sub-summary: fundamental theorems of Markov chains

Are the conditions necessary?

イロト イ押 トイヨ トイヨ トー **E** Ω 21 / 39

Positive Recurrency is Necessary for Existence

Theorem

If a Markov Chain has a stationary distribution π , then any state i with $\pi(i) > 0$ is positive recurrent.

Does uniqueness imply irreducibility?

However

It is weakly irreducible:

only one communicating class of positive recurrent states

Theorem

If a Markov chain has a unique stationary distribution, it has a unique communicating class of positive recurrent states

No Aperiodicity, No Stability

Consider the Markov chain with period 2.

$$
p_{11}^{(2k)}=1 \text{, but } p_{11}^{(2k-1)}=0 \text{. So, } \lim_{n\to\infty} p_{11}^{(n)} \text{ does not exist.}
$$

Generally, in case of period d , does $\lim_{n\to\infty}p_{jj}^{(nd)}$ exist? • If existent, what's it?

Yes!

The Normal Form of Periodic Markov Chain

Normal form theorem

Given an irreducible Markov chain with period d, the state space S can be uniquely partitioned into disjoint sets $C_0, C_1, ... C_{d-1}$ such that $\sum_{j\in C_{r+1\;{\rm mod}\; d}}p_{ij}=1$ for $i\in C_r, \: r=0,1,...d-1.$

25 / 39

 Ω

イロト イ押 トイヨ トイヨ トー

Sub-summary: fundamental theorems of Markov chains

All the conditions are (weakly) necessary!

イロト イ部 トイモト イモトー Ω 26 / 39

1 [A recap of Lecture 11](#page-3-0)

- **[Excursions](#page-6-0)**
- **3** [Stationary Distribution](#page-12-0)
- 4 [Calculation of Stationary Distribution](#page-26-0)
- 5 [Applications of Stationary Distribution](#page-30-0)

27 / 39

 Ω

B

メロメ メ御 メメ きょくきょ

By stability theorem

Compute iteratively or approximate by limits

By definition

- Solve the linear equation system $\pi=\pi P$, $\sum_{i\in S}\pi(i)=1$
- Flow balance theorem

Flow balance theorem

Flow balance

Let $A \subseteq S$ be a set of the states of a Markov chain, and π be a distribution over S. Define $F(A, A^c) = \sum_{i \in A, j \in A^c} \pi(i) p_{ij}$.

Theorem

 π is a stationary distribution if and only if $F(A, A^c) = F(A^c, A)$ for all $A \subseteq S$.

Proof

 (\Leftarrow) Prove by considering singletons A. (\Rightarrow) Observe that $\pi_i \sum_j p_{ij} = \pi_j \sum_j p_{ji}$.

> 209 29 / 39

Example

Walk with a barrier

$$
q\bigodot \overbrace{0\ \overbrace{q}^{p}\ \overbrace{q}^{p}\ \overbrace{q}^{p}\ \overbrace{q}^{p}\ \overbrace{q}^{p}\ \cdots
$$

Find the stationary distribution by definition

$$
\pi(i)=p\pi(i-1)+q\pi(i+1)\text{ for all }i>0.
$$

By flow balance theorem

• For any
$$
i > 0
$$
, let $A = \{0, 1, ... i - 1\}$

•
$$
\pi(i-1)p = F(A, A^c) = F(A^c, A) = \pi(i)q
$$

 $\pi(i) = (p/q)^i \pi(0)$

1 [A recap of Lecture 11](#page-3-0)

- **[Excursions](#page-6-0)**
- **3** [Stationary Distribution](#page-12-0)
- 4 [Calculation of Stationary Distribution](#page-26-0)
- 5 [Applications of Stationary Distribution](#page-30-0)

31 / 39

 Ω

画

メロメ メ御き メミメ メミメ

Application

Natural language processing

A fundamental problem: Computing the probability that a sentence appears. The computation is made possible by Markov hypothesis.

PageRank

Task: Assign importance to web pages.

Model: Web graph consists of linked pages. A typical process of surfing the Web is to follow links and randomly jump in case of dangling. So we get a Markov chain with transition probability

> $\widehat{p}_{ij} =$ \int \mathcal{L} $1/|L(i)|$ if $j \in L(i)$ $1/|V|$ if $L(i) = \emptyset$ 0 otherwise

To guarantee irreducibility and aperiodicity, use **bored surfer** style. Namely $p_{ij} \triangleq (1 - \alpha) \widehat{p}_{ij} + \frac{\alpha}{|V|}$.
The stationary distribution is the The stationary distribution is the rank. Compute iterat[ive](#page-30-0)l[y.](#page-32-0)

32 / 39

Random Walks on Undirected Graphs

Random walks

Let $G = (V, E)$ be a finite, undirected, and connected graph. A random walk on G is a Markov chain with $p_{uv} = \frac{1}{d_u}$ $\frac{1}{d_u}$ for $(u, v) \in E$

Period

A random walk on G is aperiodic iff G is not k -partite

Stationary distribution

Stationary distribution of a random walk on $G: \, \pi(v) = \frac{d(v)}{2|E|}.$

So, expected return time $h_{uu}\triangleq \mathbb{E}[T_{uu}] = \frac{2|E|}{d(u)}.$

イロメ イ団メ イモメ イモメー Ω 33 / 39

Expected Hitting Time and Cover Time

Claim: If
$$
(u, v) \in E
$$
, then $h_{vu} < 2|E|$.
Proof: Use the fact that $\frac{2|E|}{d(u)} = h_{uu} = \frac{1}{d(u)} \sum_{v \in N(u)} (1 + h_{vu})$.

Cover time

Claim: The cover time of $G = (V, E)$ is no more than $4|V| \cdot |E|$. **Proof:** Explore the Eulerian tour on a spanning tree of G . The expected time to go through the vertices $v_0, v_1, ... v_{2|V|-2} = v_0$ upper bounds the cover time.

> 34 / 39

Parrondo's Paradox (since 1996)

A question that seems silly at the first glance

Can you combine two losing games to get a winning one? Yes!

The magic example

- Game G_1 : flip coin a with head probability $p_a < \frac{1}{2}$. You win a dollar if you get Head, otherwise lose a dollar.
- Game G_2 : Let l be the number of losses so far and w be that of wins. You have coins b and c. Flip b if $w - l = 0 \pmod{3}$, and flip c otherwise. You win a dollar if you get Head, otherwise lose a dollar.
- Game G_3 : repeatedly flip a fair coin d. If you get Head, proceed as in game G_1 ; otherwise proceed to G_2 .

When $p_a = 0.49, p_b = 0.09, p_c = 0.74, A$ and B are losing games while C is a winning one.

35 / 39

An intuitive interpretation

- In both cases. B wins
- If the cases appear alternately, A can win

36 / 39

วฉล

Randomness is not necessary

 G_1' : lose 1. G_2' : lose 5 for odd capital, win 3 otherwise. G_3^\prime : Play alternatively, beginning with G_2^\prime

The difficulty lies in analyzing G_2

Try to determine the relative probability of reaching -3 or $+3$ first, or study the probability of wins in stationary distribution.

Game G_3 is like G_2 , except that the head probabilities are slightly different.

References

- Lecture Notes of Stochastic Processes, by Glen Takahara <http://www.mast.queensu.ca/~stat455/>
- **Introductory Lecture Notes on Markov Chains And Random** Walks, by Takis Konstantopoulos <http://www2.math.uu.se/~takis/L/McRw/mcrw.pdf>
- [Section 2, Lecture 16 of Lecture notes on Probability and](https://www.cs.cmu.edu/~odonnell/papers/probability-and-computing-lecture-notes.pdf) [Computing by Ryan O'Donnell](https://www.cs.cmu.edu/~odonnell/papers/probability-and-computing-lecture-notes.pdf)
- Section 7.4&7.5 of the textbook *Probability and Computing*

Thank you! Happy the year of pig!

Ξ QQ 39 / 39