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Preface

Questions, comments, or suggestions?

Monty Hall Problem?

Review

1 Probability axioms

2 Union Bound

3 Independence
4 Conditional probability and chain rule

Pr(
⋂n

i=1Ai) =
∏n

i=1 Pr(Ai|
⋂i−1

j=1Aj)

5 Random variables: expectation, linearity,
Bernoulli/binomial/geometric distribution

6 Coupon collector’s problem: E[X] = nH(n) ≈ n lnn
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Coupon collector’s problem: fight the salesman

Expectation is too weak

Average has nothing to do with the probability of exceeding it,
Guy!

Example

Random variables Yα with α ≥ 1

Let Pr(Yα = α) = 1
α and Pr(Yα = 0) = 1− 1

α

Pr(Yα ≥ 1) = 1
α can be arbitrarily close to 1

But, mh...
Possible to exceed so much with high probability?
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An inequality for tail probability

Markov’s inequality

If X ≥ 0 and a > 0, Pr(X ≥ a) ≤ E[X]
a .

Proof:

E[X] =
∑

i≥0 i ∗ Pr(X = i) ≥
∑

i≥a i ∗ Pr(X = i)
≥
∑

i≥a a ∗ Pr(X = i) = a ∗ Pr(X ≥ a).

Observations

Intuitive meaning (level of your income)

With 12 coupons, E[X] ≈ 30,Pr(X ≥ 200) < 1/6

Loose? Tight when only expectation is known!
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Conditional expectation

Definition

E[Y |Z = z] =
∑

y y ∗ Pr(Y = y|Z = z)

Theorem

E[Y ] = EZ [EY [Y |Z]] ,
∑

z Pr(Z = z)E[Y |Z = z]

Proof.

∑
z Pr(Z = z)E[Y |Z = z] =

∑
z Pr(Z = z)

∑
y y

Pr(Y=y,Z=z)
Pr(Z=z)

=
∑

y y
∑

z Pr(Y = y, Z = z)

=
∑

y yPr(Y = y) = E[Y ]
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Application: expected run-time of Quicksort

Via conditional expectation

Xn: the runtime of sorting an n-sequence.

K: the rank of the pivot.

If K = k, the pivot divides the sequence into a
(k − 1)-sequence and an (n− k)-sequence.

Given K = k, Xn = Xk−1 +Xn−k + n− 1.

E[Xn|K = k] = E[Xk−1] + E[Xn−k] + n− 1.

E[Xn] =
∑n

k=1 Pr(K = k)(E[Xk−1] + E[Xn−k] + n− 1)

=
∑n

k=1
E[Xk−1]+E[Xn−k]

n + n− 1.

Please verify that E[Xn] = 2n lnn+O(n).
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Application: expected run-time of Quicksort

Via linearity + indicators

yi: the i-th biggest element

Yij : indicator for the event that yi, yj are compared

Yij = 1 iff the first pivot in {yi, yi+1, ...yj} is yi or yj

E[Yij ] = Pr(Yij = 1) = 2
j−i+1

Xn =
∑n

i=1

∑n
j=i+1 Yij

E[Xn] =
∑n

i=1

∑n
j=i+1 E[Yij ]

It is easy to see that E[Xn] = (2n+ 2)
∑n

i=1
1
i +O(n)
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Moments of random variables

Why moments?

Global features of a random variable.

Expectation is too weak: can’t distinguish Yα

Definition

kth moment: E[Xk].

Variance: V ar[X] = E[(X − E[X])2]
Show how far the values are away from the average.

Examples: V ar[Yα] = α− 1

Covariance: Cov(X,Y ) , E[(X − E[X])(Y − E[Y ])].

It’s zero in case of independence.
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Properties of the variance

V ar[X + Y ] = V ar[X] + V ar[Y ] + 2Cov(X,Y )

V ar[X + Y ] = V ar[X] + V ar[Y ] if X and Y are independent.

V ar[X] = E[X2]− (E[X])2

Cov(X,Y ) = E[XY ]− E[X]E[Y ]
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Variances of some random variables

Binomial random variable with parameters n and p

X =
∑n

k=1Xi with the Xi’s independent.

V ar[Xi] = p− p2 = p(1− p).

V ar[X] =
∑n

k=1 V ar[Xi] = np(1− p)

Geometric random variable with parameter p

Straightforward computing shows that V ar[X] = 1−p
p2

Coupon collector’s problem

We know that V ar[Xi] = 1−pi
p2i

.

V ar[X] =
∑n

k=1 V ar[Xi] ≤
∑n

k=1
n2

(n−k+1)2
≤ π2n2

6
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A new argument against the salesman

Chebyshev’s inequality

Pr(|X − E[X]| ≥ a) ≤ V ar[X]
a2

.

An immediate corollary from Markov’s inequality.

Coupon collector’s problem

Pr(X ≥ 200) = Pr(|X − E[X]| ≥ 170) ≤ 255
1702

< 0.01

Trump card

By union bound, Pr(|X − nHn| ≥ 5nHn) ≤ 1
n5 .

Hint: Consider the probability of not containing the ith
coupon after (c+ 1)n lnn steps.

Union bound beats the others. What a surprise!
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Brief introduction to Chebyshev

May 16, 1821 −
December 8, 1894

A founding father of
Russian mathematics

Probability, statistics, mechanics, geometry, number theory

Chebyshev inequality, Bertrand-Chebyshev theorem,
Chebyshev polynomials, Chebyshev bias

Aleksandr Lyapunov, Markov brothers
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Chernoff bounds: inequalities of independent sum

Motivation

1-moment ⇒ Markov’s inequality

1- and 2-moments ⇒ Chebyshev’s inequality

Q: more information ⇒ stronger inequalities?

Examples

Flip a fair coin for n trials. Let X be the number of Heads, which
is around the expectation n

2 . How about its concentration?

Union bound makes no sense

Markov’s inequality: Pr(X − n
2 >
√
n lnn) < n

n+2
√
n lnn

 1

Chebyshev’s inequality: Pr(X − n
2 >
√
n lnn) < 1

lnn

Can we do better due to independent sum? YES!
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Chernoff bounds: basic form

Chernoff bounds

Let X =
∑n

i=1Xi, where X ′is are independent Poisson trials. Let
µ = E[X]. Then

1. For any δ > 0, Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1+δ)(1+δ)

)µ
.

2. For any 1 > δ > 0, Pr(X ≤ (1− δ)µ) ≤
(

e−δ

(1−δ)(1−δ)

)µ
.

Remarks

Note that 0 < eδ

(1+δ)(1+δ)
< 1 when δ > 0. The bound in 1

exponentially deceases w.r.t. µ! And so is the bound in 2.
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Proof of the upper tail bound

For any λ > 0,

Pr(X ≥ (1 + δ)µ) = Pr
(
eλX ≥ eλ(1+δ)µ

)
≤ E[eλX ]

eλ(1+δ)µ
.

E
[
eλX

]
= E

[
eλ

∑n
i=1Xi

]
= E

[∏n
i=1 e

λXi
]

=
∏n
i=1 E

[
eλXi

]
.

Let pi = Pr(Xi = 1) for each i. Then,

E
[
eλXi

]
= pie

λ·1 + (1− pi)eλ·0 = 1 + pi(e
λ − 1) ≤ epi(eλ−1).

So, E
[
eλX

]
≤
∏n
i=1 e

pi(e
λ−1) = e

∑n
i=1 pi(e

λ−1) = e(e
λ−1)µ.

Thus, Pr(X ≥ (1 + δ)µ) ≤ E[eλX ]
eλ(1+δ)µ

≤ e(e
λ−1)µ

eλ(1+δ)µ
=

(
e(e

λ−1)

eλ(1+δ)

)µ
.

Let λ = ln(1 + δ) > 0, and the proof ends.
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Lower tail bound and application

Lower tail bound

Can be proved likewise.

A tentative application

Recall the coin flipping example. By the Chernoff bound,

Pr(X − n

2
>
√
n lnn) <

e
√
n lnn(

1 + 2
√

lnn
n

)(n2+
√
n lnn)

Even hard to figure out the order.

Is there a bound that is more friendly?
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Chernoff bounds: a simplified form

Simplified Chernoff bounds

Let X =
∑n

i=1Xi, where X ′is are independent Poisson trials. Let
µ = E[X],

1. Pr(X ≥ (1 + δ)µ) ≤ e−
δ2

2+δ
µ for any δ > 0;

2. Pr(X ≤ (1− δ)µ) ≤ e−
δ2

2
µ for any 1 > δ > 0.

Application to coin flipping

Pr(X − n
2 >
√
n lnn) ≤ n−

2
3 . This is exponentially tighter than

Chebychev’s inequality ( 1
lnn).
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Proof and Remarks

Idea of the proof

1. eδ

(1+δ)(1+δ)
≤ e−

δ2

2+δ ⇔ δ − (1 + δ) ln(1 + δ) < − δ2

2+δ ⇐
ln(1 + δ) > 2δ

2+δ for δ > 0.

2. Use calculus to show that e−δ

(1−δ)(1−δ) ≤ e
− δ

2

2 .

Remark 1

When 1 > δ > 0, we have − δ2

2+δ < −
δ2

3 , so

Pr(X ≥ (1 + δ)µ) ≤ e−
δ2

3
µ, and Pr(|X − µ| ≥ δµ) ≤ 2e−

δ2

3
µ.

Remark 2

The bound is simpler but looser. Generally, it is outperformed by
the basic Chernoff bound. See example.
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Example: random rounding

Minimum-congestion path planning

G = (V,E) is an undirected graph. D = {(si, ti)}mi=1 ⊆ V 2.

Find a path Pi connecting (si, ti) for every i.

Objective: minimize the congestion maxe∈E cong(e), the
number of the paths among {Pi}mi=1 that contain e.

This problem is NP-hard, but we will give an approximation
algorithm based on randomized rounding.

Model as an integer program

Relax it into a linear program

Round the solution

Analyze the approximation ratio
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ILP and its relaxation

Notation

Pi: the set of candidate paths connecting si and ti;
f iP : the indicator of whether we pick path P ∈ Pi or not;
C: the congestion in the graph.

ILP LP
Min C Min C
s.t.
∑

P∈Pi f
i
P = 1,∀i s.t.

∑
P∈Pi f

i
P = 1,∀i∑

i

∑
e∈P∈Pi f

i
P ≤ C,∀e ⇒

∑
i

∑
e∈P∈Pi f

i
P ≤ C,∀e

f iP ∈ {0, 1}, ∀i, P f iP ∈ [0, 1],∀i, P

Round a solution to the LP

For every i, randomly pick one path Pi ∈ Pi with probability f iP .
Use the set {Pi}ni=1 as an approximate solution to the ILP.
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Approximation ratio

Notation

C: optimum congestion of the ILP.
C∗: optimum congestion of the LP. C∗ ≤ C.
Xe
i : indicator of whether e ∈ Pi.

Xe ,
∑

iX
e
i : congestion of the edge e.

X , maxeX
e: the network congestion.

Objective

We hope to show that Pr(X > (1 + δ)C) is small for a small δ.
By union bound, we only need to show Pr(Xe > (1 + δ)C) < 1

n3

for every e.

Apply Chernoff bound to Xe =
∑

iX
e
i
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Prove Pr(Xe > (1 + δ)C) < 1
n3

Easy facts

E[Xe
i ] =

∑
e∈P∈Pi f

i
P .

µ = E[Xe] =
∑

i E[Xe
i ] =

∑
i

∑
e∈P∈Pi f

i
P ≤ C∗ ≤ C.

If C = ω(lnn), δ can be arbitrarily small

Proof: For any 0 < δ < 1, Pr(Xe > (1 + δ)C) ≤ e−
δ2C
2+δ ≤ 1

n3 .

If C = O(lnn), δ = Θ(lnn)

Proof: Pr(Xe > (1 + δ)C) ≤ e−
δ2C
2+δ ≤ e−

δ
2 for δ ≥ 2.

So, Pr(Xe > (1 + δ)C) ≤ 1
n3 when δ = 6 lnn.
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Prove Pr(Xe > (1 + δ)C) < 1
n3

If C = O(lnn), δ can be improved to be δ = Θ
(

lnn
ln lnn

)
Proof: By the basic Chernoff bounds,

Pr(Xe > (1 + δ)C) ≤
[

eδ

(1 + δ)(1+δ)

]C
≤ eδ

(1 + δ)(1+δ)
.

When δ = Θ
(

lnn
ln lnn

)
, (1 + δ) ln(1 + δ) = Θ(lnn) and

δ − (1 + δ) ln(1 + δ) = Θ(lnn).
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Remarks of the application

Remark 1

It illustrates the practical difference of various Chernoff bounds.

Remark 2

Is it a mistake to use the inaccurate expectation?
No! It’s a powerful trick.
If µL ≤ µ ≤ µH , the following bounds hold:

Upper tail: Pr(X ≥ (1 + δ)µH) ≤
(

eδ

(1+δ)(1+δ)

)µH
.

Lower tail: Pr(X ≤ (1− δ)µL) ≤
(

e−δ

(1−δ)(1−δ)

)µL
.

Chernoff bounds + Union bound: a paradigm

A high-level picture: Want to upper-bound Pr(something bad).
1. By Union bound, Pr(something bad) ≤

∑Large
i=1 Pr(Badi);

2. By Chernoff bounds, Pr(Badi) ≤ minuscule for each i;
3. Pr(something bad) ≤ Large×minuscule = small.
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Questions

Why the Chernoff bound is better? Note that
it’s rooted at Markov’s Inequality.

Can it be improved by using functions other
than exponential?
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