Probabilistic Method and Random Graphs

Lecture 2. Moments and Inequalities !
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1The slides are partially based on Chapters 3 and 4 of Probability and

Computing.
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Preface

Questions, comments, or suggestions?

Monty Hall Problem?

)

Review

o

2]
o
o

©

Probability axioms
Union Bound

Independence
Conditional probability and chain rule

o Pr(Mi_; 4s) = ITic; Pr(Ail ;21 4))
Random variables: expectation, linearity,
Bernoulli/binomial /geometric distribution

Coupon collector’s problem: E[X] =nH(n) ~nlnn
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Coupon collector’s problem: fight the salesman

Expectation is too weak

Average has nothing to do with the probability of exceeding it,
Guy!

@ Random variables Y, with oo > 1
o Let Pr(Yo=a)=1and Pr(Yo=0)=1-1
o Pr(Y,>1)= é can be arbitrarily close to 1

But, mh...
Possible to exceed so much with high probability?
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An inequality for tail probability

Markov's inequality

If X >0and a >0, Pr(X >a) < ZX
E[X] = Y000 # Pr(X = i) > Y0, i % Pr(X = i)
> Y s a* Pr(X =i) = axPr(X > a).
@ Intuitive meaning (level of your income)
o With 12 coupons, E[X] ~ 30, Pr(X > 200) < 1/6

@ Loose? Tight when only expectation is known!
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Conditional expectation

EY|Z =z2]=3, y*xPr(Y =y|Z =2)

v

Theorem
E[Y] = Ez[Ey[Y|Z]] £ ¥, Pr(Z = 2)E[Y|Z = 7]
Y. Pr(Z=2)E[Y|Z=2= Y,Pr(Z=2Y,y2 02l

= 2,y Pr(Y =y,Z=2)
= > ,yPr(Y =y) =E[Y]
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Application: expected run-time of Quicksort

Via conditional expectation

@ X,: the runtime of sorting an n-sequence.
@ K: the rank of the pivot.

o If K =k, the pivot divides the sequence into a
(k — 1)-sequence and an (n — k)-sequence.
o Given K =k, X;, = X1+ Xy +n — 1.
o E[X,|K =k|=E[Xy_1] + E[Xp,—x] + n — 1.
E[Xa] = Y, Pr(K = k)(E[X51] + E[Xoi] + 1 — 1)
= M +n—1.

o Please verify that E[X,] =2nlnn+ O(n).
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Application: expected run-time of Quicksort

Via linearity + indicators

@ y;: the i-th biggest element

@ Y;;: indicator for the event that y;,y; are compared

o Y;; = 1 iff the first pivot in {vy;, yit1,...y;} is y; or y;
E[Y;] = Pr(Yi; = 1) = ;=5

Xn =301 D i1 Yij

E[X,] = Z?:l Z?:i+1 E[Yw]

o It is easy to see that E[X,,] = (2n +2) Y7, 1 + O(n)

7
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Moments of random variables

@ Global features of a random variable.

@ Expectation is too weak: can't distinguish Y,

o kth moment: E[X*].
e Variance: Var[X] = E[(X — E[X])?]
Show how far the values are away from the average.

e Examples: Var[Y,]| =a—1

e Covariance: Cov(X,Y) 2 E[(X — E[X])(Y — E[Y])].

@ It's zero in case of independence.
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Properties of the variance

VarlX + Y] =Var[X]+ Var[Y] +2Cou(X,Y) J

Var[X +Y] = Var[X] + Var[Y] if X and Y are independent. ]

Var[X] = E[X?] — (E[X])? |

Cov(X,Y) = E[XY] — E[X]|E[Y] J
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Variances of some random variables
Binomial random variable with parameters n and p

o X =5 ,_, X; with the X;'s independent.
o Var[X;] =p—p* =p(1—p).
o Var(X] =Y, Var[X;] = np(1 —p)

v

Geometric random variable with parameter p

Straightforward computing shows that Var[X] = -

Coupon collector’s problem

e We know that Var[X;] = 1;2?”.

%
2 2,2

o V(IT'[X] = ZZZI Var[Xl] S ZZ:I (n—z—‘rl)? S 7r6n
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A new argument against the salesman

Chebyshev's inequality
o Pr(|X — E[X]| > a) < YerX].

@ An immediate corollary from Markov's inequality.

Coupon collector's problem
Pr(X > 200) = Pr(|X — E[X]| > 170) < -5 < 0.01

1702
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A new argument against the salesman

Chebyshev's inequality

o Pr(|X — E[X]| > a) < YerX].

@ An immediate corollary from Markov's inequality.

Coupon collector's problem

Pr(X > 200) = Pr(|X — E[X]| > 170) < 25 < 0.01

@ By union bound, Pr(|X — nH,| > 5nH,) < %

@ Hint: Consider the probability of not containing the ith
coupon after (¢ + 1)nlnn steps.

Union bound beats the others. What a surprise! J
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Brief introduction to Chebyshev

e May 16, 1821 —
December 8, 1894

o A founding father of
Russian mathematics

@ Probability, statistics, mechanics, geometry, number theory

@ Chebyshev inequality, Bertrand-Chebyshev theorem,
Chebyshev polynomials, Chebyshev bias

@ Aleksandr Lyapunov, Markov brothers
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Chernoff bounds: inequalities of independent sum

@ 1-moment = Markov's inequality

@ 1- and 2-moments = Chebyshev's inequality

@ Q: more information = stronger inequalities?

V.

Flip a fair coin for n trials. Let X be the number of Heads, which

is around the expectation 5. How about its concentration?
@ Union bound makes no sense

y - . . n n
o Markov's inequality: Pr(X — % > vnlnn) < 1

o Chebyshev's inequality: Pr(X — § > vnlnn) < ﬁ
@ Can we do better due to independent sum? YES!

N
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Chernoff bounds: basic form

Chernoff bounds
Let X = )", X;, where X/s are independent Poisson trials. Let
u=E[X]. Then

5 p
1. Forany § >0, Pr(X > (14 0)u) < (W) .

2. Forany1>6>0,Pr(X <(1-0)u) < (@j;)%)u-

RENEIS

| A\

1)

Note that 0 < (1+68)W < 1 when § > 0. The bound in 1

exponentially deceases w.r.t. u! And so is the bound in 2.
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Proof of the upper tail bound

For any A > 0,
Pr(X > (1+0)p) = Pr (e > X1+0m) <

B[] < B[220 4] ~E [T, ) = [T B[],

Let p; = Pr(X; = 1) for each i. Then,
E [e)‘Xi] =piert + (1 —p)er? =14pi(e* —1) < epi(e*=1)

So, E [XX] < [T, epile™=1) = eXimapi(e’=1) — o =1, J

= XAFk = A(dto)m eA(119)

AX A Ao\ P
Thus, Pr(X > (1+d0)p) < E[e*X] < el"n (e( 1)> .
Let A = In(1 + 6) > 0, and the proof ends.
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Lower tail bound and application

Lower tail bound
Can be proved likewise.
A tentative application

Recall the coin flipping example. By the Chernoff bound,

n e\/nlnn
Pr(X—§>\/nlnn)< ENar)
<1+2 “;f)

Even hard to figure out the order.

A\

Is there a bound that is more friendly?

N
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Chernoff bounds: a simplified form

Simplified Chernoff bounds
Let X =", X;, where X/s are independent Poisson trials. Let
p=E[X], .
)
1. Pr(X > (1 +6)u) <e 285" for any § > 0;
2
2. Pr( X <(1-9d)p) < e~ T for any 1 >6> 0.

| 5\

Application to coin flipping
Pr(X — § > +vnlnn) < n3. This is exponentially tighter than
Chebychev's inequality (1-).

Inn
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Proof and Remarks

Idea of the proof

e -2 )
W<e 243 <:>5—(1+5)1n(1+5)<_26T5<:

1n(1+5)>2+5 for § > 0.

1.

-5 52
2. Use calculus to show that m <e 7.

2
When 1> 6§ > 0, wehave—m< , SO )
Pr(X > (1 4 6)u) < e~ %, and Pr(|X — | > 6p) < 20 FH

The bound is simpler but looser. Generally, it is outperformed by
the basic Chernoff bound. See example.
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Example: random rounding

Minimum-congestion path planning

e G = (V,E) is an undirected graph. D = {(s;,t;)}; C V2.

e Find a path P; connecting (s;,t;) for every i.

@ Objective: minimize the congestion max.cp cong(e), the
number of the paths among {P;}7"; that contain e.

This problem is NP-hard, but we will give an approximation
algorithm based on randomized rounding.

Model as an integer program

°
@ Relax it into a linear program
@ Round the solution

°

Analyze the approximation ratio
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ILP and its relaxation

Notation

IP;: the set of candidate paths connecting s; and t;;
f};: the indicator of whether we pick path P € P; or not;
C': the congestion in the graph.

ILP LP
Min C Min C
st. 3 pep, fp =1,V st. Y pep, fp = 1,Vi
Zz’ EeePePi fp<CVe = > Eeepep fp < C,Ve
fp €{0,1}, Vi, P fb€100,1],i, P

Round a solution to the LP

For every i, randomly pick one path P; € P; with probability f5.
Use the set {P;}7" ; as an approximate solution to the ILP.
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Approximation ratio

Notation

C': optimum congestion of the ILP.

C*: optimum congestion of the LP. C* < C.
X{: indicator of whether e € P;.

Xe 2% X congestion of the edge e.

X £ max, X¢: the network congestion.

| A\

Objective
We hope to show that Pr(X > (14 6)C) is small for a small 4.
By union bound, we only need to show Pr(X€¢ > (14 6§)C) < %

for every e.

Apply Chernoff bound to X¢ =5". X*¢
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Prove Pr(X¢ > (1+6)C) <

Easy facts

E[Xze] = ZeePePi fIZD '
p=E[X] = ¥, B[X¢] = 5 Yeeper, f5 < C* < C.

If C =w(Inn), § can be arbitrarily small

Proof: Forany 0 < 6 < 1, Pr(X¢ > (1+0)C) < e 200 < L.

If C =0O(lnn), 6 =O(Inn)

Proof: Pr(X€¢ > (1+0)C) < e gJré <e 3 for § > 2.
So, Pr(X¢ > (1+6)C) < -5 when § = 61Inn.
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Prove Pr(X¢ > (1+6)C) < &

7°

If C = O(Inn), § can be improved to be § = © ({22 )

Inlnn

Proof: By the basic Chernoff bounds,

)

e )

Pr(X® > (14 6)C) < [ °

When § = © (22, (1 + ) In(1 + &) = ©(lnn) and

Inlnn/’

d—(1+9)In(1+0) =06(Inn).

C
(1+5)(1+6):| s (1_|_5)(1+6)'

23/26



Remarks of the application

It illustrates the practical difference of various Chernoff bounds.

Remark 2

Is it a mistake to use the inaccurate expectation?
No! It's a powerful trick.
If ur < p < pg, the following bounds hold:

o ed [22:4
e Upper tail: Pr(X > (1+90)pm) < (W) .

o Lower tail: Pr(X < (1—90)ur) < (U,Z)%YL-

Chernoff bounds + Union bound: a paradigm

A high-level picture: Want to upper-bound Pr(something bad).
1. By Union bound, Pr(something bad) < Y78 Pr(Bad,);

2. By Chernoff bounds, Pr(Bad;) < minuscule for each i;

3. Pr(something bad) < Large x minuscule = small.
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Why the Chernoff bound is better? Note that
it's rooted at Markov's Inequality. J

Can it be improved by using functions other
than exponential? J
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