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Preface

Questions, comments, or suggestions?
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A brief review

Moments

Expectation, k-moment, variance

Inequalities

Universal: Union bound
1-moment: Markov’s inequality
2-moment: Chebychev’s inequality

Chernoff bounds: independent sum

Let X =
∑n

i=1Xi, where X ′is are independent Poisson trials. Let
µ = E[X]. Then

1. For δ > 0, Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1+δ)(1+δ)

)µ
≤ e−

δ2

2+δ
µ.

2. For 1 > δ > 0, Pr(X ≤ (1− δ)µ) ≤
(

e−δ

(1−δ)(1−δ)

)µ
≤ e−

δ2

2
µ.
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General bounds for independent sums

Each Xi ∈ [0, 1] but is not necessarily a Poisson trial

Basic Chernoff bounds remain valid (by eλx ≤ xe1λ + (1− x)e0λ).

Each Xi ∈ [0, s]

Basic Chernoff bounds remain valid, except that the exponent µ is
divided by s.

The domains (ai, bi) of X ′is differ

Hoeffding’s Inequality: Pr(|X − E[X]| ≥ t) ≤ 2e
− 2t2∑

i(bi−ai)2 .
Proposed in 1963.

Remarks of Hoeffding’s Inequality

1. It considers the absolute, rather than relative, deviation.
Particularly useful if µ = 0.
2. When each Xi ∈ [0, s], it is tighter than the simplified basic
Chernoff bounds if δ is big, and looser otherwise.
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Hoeffding’s Inequality

Let X =
∑n

i=1Xi, where Xi ∈ [ai, bi] are independent r.v. Then

Pr(|X − E[X]| ≥ t) ≤ 2e
− 2t2∑

i(bi−ai)2 for any t > 0

Idea of the proof

1. Given r.v. Z ∈ [a, b] with E[Z] = 0, E[eλZ ] ≤ e
λ2(b−a)2

8 .

2. Pr(X − E[X] ≥ t) ≤
∏
i E[eλ(Xi−E[Xi])]

eλt
≤ eλ2

∑
i
(bi−ai)

2

8
−λt

Proof of Fact 1

1. eλz ≤ z−a
b−ae

λb + b−z
b−ae

λa, for z ∈ [a, b].

2. E[eλZ ] ≤ (1− θ + θeu)e−θu = eφ(u), where θ = −a
b−a ,

u = λ(b− a), and φ(u) , −θu+ ln(1− θ + θeu).

3. Use calculus to show that φ(u) ≤ u2

8 .
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Example: Hoeffding’s Inequality + Union bound

Set balancing

Given a matrix A ∈ {0, 1}n×m, find b ∈ {−1, 1}m s.t. ‖ Ab ‖∞ is
minimized.

Motivation

feature 1:
feature 2:

...
feature n:


a11 a12 · · · a1m
a21 a22 · · · a2m

...
...

. . .
...

an1 an2 · · · anm

, each column is an object.

Want to partition the objects so that every feature is balanced.

Algorithm

Uniformly randomly sample b.
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Performance analysis

Performance

Pr(‖ Ab ‖∞≥
√

4m lnn) ≤ 2
n

Proof

For any 1 ≤ i ≤ n, Zi =
∑

j aijbj is the ith entry of Ab. By union

bound, it suffices to prove Pr(|Zi| ≥
√

4m lnn) ≤ 2
n2 for each i.

Fix i. W.l.o.g, assume aij = 1 iff 1 ≤ j ≤ k for some k ≤ m. Then
Zi = b1 + ...+ bk.

Note that bj ’s are independent over {−1, 1} with E[bj ] = 0.

By Hoeffding’s Inequality, Pr(|Zi| ≥
√

4m lnn) ≤ 2e−
8m lnn

4k ≤ 2
n2
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Reflection on moments and Chernoff bounds

Moments

Do moments uniquely determine the distribution?

Chernoff Bounds

Why is it so good?
Can it be improved by non-exponential functions?
Anything to do with moments?

The story begins with generating functions.
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Generating functions

Informal definition

A power series whose coefficients encode information about a
sequence of numbers.

Example: Probability generating function

Given a discrete random variable X whose values are non-negative
integers, GX(t) ,

∑
n≥0 t

n Pr(X = n) = E[tX ].
Example: Bernoulli and binomial random variables.

Properties

Convergence: It converges if |t| < 1.
Uniqueness: GX(·) ≡ GY (·) implies the same distribution.

Application

Toy: Use uniqueness to show that the summation of independent
identical binomial distribution is binomial.
Deriving Moments: G

(k)
X (1) = E[X(X − 1) · · · (X − k + 1)].
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Moment generating functions

Shortcoming of probability generating functions

Only valid for non-nagetive integer random variables.

Moment generating functions

MX(t) ,
∑

x e
tx Pr(X = x) = E[etX ].

Example of Bernoulli and binomial distributions.

Properties

If MX(t) converges around 0, M
(k)
X (0) = E[Xk], meaning the

moments are exactly the coefficients of the Taylor’s expansion.
Convergence: MX(t) converges when X is bounded.
If independent, MX+Y = MXMY .
Uniqueness: If MX(t) converges around 0, the distribution is
uniquely determined by the moments. (Why? See later)
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But

Moments generating function may not converge

Cauchy distribution: density function f(x) = 1
π(1+x2)

does not

have moments for any order.

An example of non-uniqueness of moments

Log-Normal-like distribution:

density function fXn(x) = e−
1
2 (ln x)2

√
2πx

(1 + α sin(2nπ lnx)).

k-Moments E[Xk
n] = ek

2/2 for non-negative integers k.
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Characteristic functions

Definition

ϕX(t) ,
∫
R e

itxdFX(x) where i =
√
−1 and t is real.

Properties

Convergence: It always exists.
Uniqueness: It uniquely determines the distribution.
Rationale of the uniqueness.

Uniqueness of convergent moments generating functions

Suppose MX(t) = MY (t) converges around 0.

φX(t) and φX(t) can be extended to the belt with small
imaginary part (since formally, MX(t) = φX(it))

φX(t) = φX(t) when t is purely imaginary in this belt

By the unique continuation theorem of analytic complex
functions, the characteristic functions are equal
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Ready to get insights

Moments

Do moments uniquely determine the distribution?
Yes, but conditionally.

Chernoff Bounds

Why is it so good?

Can it be improved by non-exponential functions?

Anything to do with moments?

What’s your answer?
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A story of generating function

Introduced in 1730 by Abraham de Moivre, to solve the general
linear recurrence problem

Wisdom: A generating function is a clothesline on which we hang
up a sequence of numbers for display. -Herbert Wilf

Application to Fibonacci numbers (by courtesy of de Moivre):
F (x) =

∑∞
n=0 Fnx

n = x+
∑∞

n=2(Fn−1 + Fn−2)x
n =

x+ xF (x) + x2F (x)

⇒ F (x) = x
1−x−x2 = 1√

5

(
φ

x+φ −
ψ

x+ψ

)
=
∑∞

n=0
1√
5

(φn − ψn)xn

⇒ Fn = 1√
5

(φn − ψn) .

14 / 23



Brief introduction to Abraham de Moivre

May 26, 1667-
Nov. 27, 1754

A French
mathematician

de Moivre’s formula

Binet’s formula

Central limit theorem

Stirling’s formula

Legend

Friends: Isaac Newton, Edmond Halley, and James Stirling

Struggled for a living and lived for mathematics

The Doctrine of Chances was prized by gamblers

2nd probability textbook in history

Predicted the exact date of his death
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Chernoff bound in a big picture

Fundamental laws of probability theory

Law of large numbers (Cardano, Jacob Bernoulli 1713, Poisson
1837): The sample average converges to the expected value.
Central limit theorem (Abraham de Moivre 1733, Laplace 1812,
Lyapunov 1901, Pólya 1920): The arithmetic mean of independent
random variables is approximately normally distributed.

lim
n→∞

Pr

(
√
n

((
1

n

n∑
i=1

Xi

)
− µ

)
≤ x

)
= Φ

(x
σ

)

Marvelous but ...

Say nothing about the rate of convergence

Large deviation theory

How fast does it converge? Beyond central limit theorem
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A glance at large deviation theory

Motivation

Xn: the number of heads in n flips of a fair coin.
By the central limit theorem, Pr(Xn ≥ n

2 +
√
n)→ 1− Φ(1).

What about Pr(Xn ≥ n
2 + n

3 )? Nothing but converging to 0.

Chernoff bounds say...

Pr(Xn ≥ n
2 + n

3 ) ≤

(
e
2
3

( 5
3)

5
3

)n
2

≈ e−0.092n.

Actually

Direct calculation shows that
Pr(Xn ≥ n

2 + n
3 ) ≈ e−0.2426n+o(n) � Chernoff bound.

Oh, no!
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Mission of Large Deviation Theory

Find the asymptotic probabilities of rare events - how do they
decay to 0 as n→∞?

Rare events mean large deviation.
So large that CLT is almost useless (deviation up to

√
n).

Intuition

Inspired by Chernoff bounds, conjecture that probabilities of rare
events will be exponentially small in n : e−cn for some c.
Q: Does limn→∞

1
n ln Pr(Eraren ) exist? If so, what’s it?
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Large Deviation Principle

Simple form (By courtesy of Cramer, 1938)

Let X1, ...Xn, ... ∈ R be i.i.d. r.v. which satisfy E[etX1 ] <∞ for
t ∈ R. Then for any t > E[X1], we have

lim
n→∞

1

n
ln Pr(

n∑
i=1

Xi ≥ tn) = −I(t),

where
I(t) , sup

λ>0
λt− lnE[eλX1 ].

Remark

I(·): rate function.
Many variants: the factor 1

n , tn in the events, random variables
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Large Deviation Principle: Proof

Large Deviation Principle

limn→∞
1
n ln Pr(

∑n
i=1Xi ≥ tn) = −(supλ>0 λt− lnE[eλX1 ]).

Proof: Upper bound

Let Yn =
∑n
i=1Xi
n , M(λ) = E[eλX1 ], and ψ(λ) = lnM(λ).

Pr(Yn ≥ t) ≤ e−λnt(M(λ))n for any λ ≥ 0.

1
n ln Pr(Yn ≥ t) ≤ −λt+ ψ(λ).

1
n ln Pr(Yn ≥ t) ≤ − supλ≥0(λt− ψ(λ)).
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Large Deviation Principle: Proof

Lower bound

The maximizer λ0 of λt− ψ(λ) satisfies t =
∫

xeλ0x

M(λ0)
dµ(x).

Let dµ0(x) = eλ0x

M(λ0)
dµ(x). Its expectation

∫
xdµ0(x) = t.

Let A = {Yn ≥ t} ⊆ Rn, Aδ = {Yn ∈ [t, t+ δ]} ⊆ Rn.

Prµ(A) ≥ Prµ(Aδ) =

∫
Aδ

Πn
i=1dµ(xi)

=

∫
Aδ

(M(λ0))
ne−λ0

∑n
i=1 xiΠn

i=1dµ0(xi)

≥ (M(λ0)e
−λ0(t+δ))n Prµ0(Aδ).

Applying CLT to µ0, we have limn→∞ Prµ0(Aδ) = 1
2 .

limn→∞
1
n ln Pr(Yn ≥ t) ≥ ψ(λ0)− (t+ δ)λ0, and let δ → 0.

21 / 23



Remarks

Large deviation theory vs CLT

Seemingly easy to get exponential decay in many cases, but hard
to calculate.

Chernoff bounds concern large deviation

Con: Generally weaker

Pro: Always holds, not just asymptotically

Key assumption

Independence!
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