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Questions, comments, or suggestions? )
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Expectation, k-moment, variance

Inequalities

Universal: Union bound
1-moment: Markov's inequality
2-moment: Chebychev’'s inequality

Chernoff bounds: independent sum
Let X =)"" , X;, where X/s are independent Poisson trials. Let
u=E[X]. Then

52

1. For 6 >0, Pr(X > (1 +6)p) < ((Hé)%)u < e Pk,

— 2
2. For 1> 8> 0, Pr(X < (1= 0)) < (qiymsy) <7
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General bounds for independent sums

Each X; € [0,1] but is not necessarily a Poisson trial

Basic Chernoff bounds remain valid (by e*® < ze' + (1 — 2)e).

Basic Chernoff bounds remain valid, except that the exponent  is
divided by s.

The domains (a;, b;) of X/s differ

. 2t2
Hoeffding's Inequality: Pr(|X — E[X]| > t) < 2e Ziti-a)?
Proposed in 1963.

y

Remarks of Hoeffding's Inequality

1. It considers the absolute, rather than relative, deviation.
Particularly useful if = 0.

2. When each X; € [0, s], it is tighter than the simplified basic
Chernoff bounds if ¢ is big, and looser otherwise.
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Hoeffding's Inequality

Let X =>"" | X;, where X; € [a;, b;] are independent r.v. Then
2t2

Pr(|X — E[X]| > t) < 2e Ziti—2)® for any t > 0

| A\

Idea of the proof

A2 (b—a)2
8

1. Given r.v. Z € [a,b] with E[Z] =0, E[e)‘z] <
i 3 . 2
2. Pr(X —E[X]>1) < [1, E[e*(Xi—EIXiD)] ey, Gime®

Proof of Fact 1

1. 6/\z<z a >\b+b L] forzE[ab]

2. E[eM] < (1 - 9+96 =0 = (W) where = =
u=Ab—a), and ¢p(u) = —0u + In(1 — 6 + fe*).

3. Use calculus to show that ¢(u) < %2.
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Example: Hoeffding's Inequality + Union bound

Set balancing

Given a matrix A € {0, 1}"*™, find b € {—1,1}" s.t. || Ab || is
minimized.

| A

Motivation
feature 1: ail ai2 -+ QAim
feature 2: as1 Q22 - A9m ) )
, €ach column is an object.
feature n: Apl Gp2 **°  Gpm

Want to partition the objects so that every feature is balanced.

Algorithm

Uniformly randomly sample b.
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Performance analysis

Performance

Pr(|| Ab [loo> VAmInn) < 2

Proof
Forany 1 <i<mn, Z; =}, a;;b; is the ith entry of Ab. By union
bound, it suffices to prove Pr(|Z;| > V4dmlnn) < % for each 1.

Fix i. W.l.o.g, assume a;; = 1 iff 1 < j < k for some k < m. Then
Zi =b1+ ...+ bg.

Note that b;'s are independent over {—1, 1} with E[b;] = 0.

By Hoeffding’s Inequality, Pr(|Z;| > vV4mInn) <2~ & < 2 J




Reflection on moments and Chernoff bounds
Do moments uniquely determine the distribution?

Chernoff Bounds

Why is it so good?
Can it be improved by non-exponential functions?
Anything to do with moments?

The story begins with generating functions. |
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Generating functions

Informal definition

A power series whose coefficients encode information about a
sequence of numbers.

Example: Probability generating function

Given a discrete random variable X whose values are non-negative
integers, Gx (t) £ ,5,t" Pr(X = n) = E[tX].
Example: Bernoulli and binomial random variables.

Properties

Convergence: It converges if |t < 1.
Uniqueness: Gx(-) = Gy (-) implies the same distribution.

Application

Toy: Use uniqueness to show that the summation of independent
identical binomial distribution is binomial.
Deriving Moments: Gg?)(l) =EX(X-1)--- (X —-k+1)].
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Moment generating functions

Shortcoming of probability generating functions

Only valid for non-nagetive integer random variables.

Moment generating functions

Mx(t) £, e Pr(X = z) = E[e!X].
Example of Bernoulli and binomial distributions.

o If Mx(t) converges around 0, M)((k)(O) = E[X*], meaning the
moments are exactly the coefficients of the Taylor's expansion.

e Convergence: Mx(t) converges when X is bounded.

o If independent, Mx.y = Mx My .

e Uniqueness: If Mx(t) converges around 0, the distribution is
uniquely determined by the moments. (Why? See later)

A
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But

Moments generating function may not converge

Cauchy distribution: density function f(x) =
have moments for any order.

1
m does not

An example of non-uniqueness of moments

Log-Normal-like distribution:
—l(ln :L‘)2
e 2

density function fx, () = W(l + asin(2nmInx)).

k-Moments E[X*] = ¢¥°/2 for non-negative integers k.
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Characteristic functions

ox(t) £ [p €™ dFx(x) where i = /=1 and t is real.

Properties

Convergence: It always exists.
Uniqueness: It uniquely determines the distribution.
Rationale of the uniqueness.

Uniqueness of convergent moments generating functions

Suppose Mx (t) = My (t) converges around 0.

@ ¢x(t) and ¢x(t) can be extended to the belt with small
imaginary part (since formally, Mx(t) = ¢x (it))

@ ¢x(t) = ¢x(t) when ¢ is purely imaginary in this belt
@ By the unique continuation theorem of analytic complex
functions, the characteristic functions are equal
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Ready to get insights

Do moments uniquely determine the distribution?
Yes, but conditionally.

v

Chernoff Bounds

@ Why is it so good?

@ Can it be improved by non-exponential functions?

@ Anything to do with moments?

What's your answer?

~
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A story of generating function

Introduced in 1730 by Abraham de Moivre, to solve the general
linear recurrence problem

Wisdom: A generating function is a clothesline on which we hang
up a sequence of numbers for display. -Herbert Wilf

Application to Fibonacci numbers (by courtesy of de Moivre):
F(.’E) = ZZOZO FnIEn =X + Z;OZQ(anl + Fn,Q),In =

z + zF(z) + 22 F(x)

= F@)= = = 55 (55— o) = Todo 5 (0" -9 "
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Brief introduction to Abraham de Moivre

o May 26, 1667- @ de Moivre's formula
Nov. 27, 1754 @ Binet's formula

@ A French @ Central limit theorem
mathematician @ Stirling’s formula

v

@ Friends: Isaac Newton, Edmond Halley, and James Stirling

@ Struggled for a living and lived for mathematics
@ The Doctrine of Chances was prized by gamblers
e 2nd probability textbook in history

@ Predicted the exact date of his death
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Chernoff bound in a big picture

Fundamental laws of probability theory

Law of large numbers (Cardano, Jacob Bernoulli 1713, Poisson
1837): The sample average converges to the expected value.
Central limit theorem (Abraham de Moivre 1733, Laplace 1812,
Lyapunov 1901, Pdlya 1920): The arithmetic mean of independent
random variables is approximately normally distributed.

(v ((150) ) <o) =2 2

Marvelous but ...

Say nothing about the rate of convergence

Large deviation theory

How fast does it converge? Beyond central limit theorem
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A glance at large deviation theory

X,,: the number of heads in n flips of a fair coin.
By the central limit theorem, Pr(X,, > § + \/n) — 1 — ®(1).
What about Pr(X,, > 5 + §)? Nothing but converging to 0.

Chernoff bounds say...

~ o—0.092n
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Direct calculation shows that
Pr(X, > 5+ %)= e~0-2426n+0(n) « Chernoff bound.

Oh, no! J
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Mission of Large Deviation Theory

Find the asymptotic probabilities of rare events - how do they
decay to 0 as n — co0? ’

Rare events mean large deviation.
So large that CLT is almost useless (deviation up to y/n).

Inspired by Chernoff bounds, conjecture that probabilities of rare
events will be exponentially small in n : e=“" for some c.
Q: Does limy, ,oc £ In Pr(£5"°) exist? If so, what's it?
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Large Deviation Principle

Simple form (By courtesy of Cramer, 1938)

Let X1,...X,,... € R be i.i.d. r.v. which satisfy E[e/*1] < oo for
t € R. Then for any ¢t > E[X;], we have

lim —lnPr ZX >tn) = —1(t),

n—oo n

where

I(t) 2 sup Xt — InE[eM1].
A>0

RENEILS

| A

I(-): rate function.
Many variants: the factor % tn in the events, random variables
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Large Deviation Principle: Proof

Large Deviation Principle

limy, 00 %ln PT(Z?:1 X; > tn) = —(Sup,\>0 At —In ]E[e)‘Xl]).

Proof: Upper bound

Let Y, = == () = E[e*1], and ¥(A) = In M ().

Pr(Y;, > t) < e (M (X)" for any A > 0. J
LI Pr(Y, > t) < —At +9(N). J
+InPr(Y, >t) < —supyso(At — P(X)). J
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Large Deviation Principle: Proof

Lower bound

The maximizer \g of At — 1(\) satisfies t = ze 0 du(z).

M(Xo)

et

Let dpo(z) = §755ydm(x). Its expectation [ zdpo(z) = t. J

Let A={Y, >t} CR", 45 = {Y; € [t,t + 6]} C R".

Pr(4) = Pry(Ag) = [ Tidu(e)

5
- /A (M(Xo))"e™ 20 i1 ST dpg (x5)
5

> (M(Mo)e 0+)" Pr, (4s).

Applying CLT to pg, we have lim,,_, Pr,,, (4s5) = % J

limy o0 2 InPr(Yy, > ) > ¢(Ao) — (£ + 8)Ao, and let § — 0. J
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Remarks

Large deviation theory vs CLT J

Seemingly easy to get exponential decay in many cases, but hard
to calculate.

Chernoff bounds concern large deviation

@ Con: Generally weaker

@ Pro: Always holds, not just asymptotically

Key assumption

Independence!
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