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1The slides are mainly based on Chapter 5 of Probability and Computing.
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Preface

Questions, comments, or suggestions?

2 / 20



A brief review of Lecture 3

Two questions

Do moments uniquely determine the distribution?

Why are Chernoff bounds so tight?

Generating functions

Invented by Abraham de Moivre to compute Fibonacci numbers.
Moment generating functions: MX(t) = E[etX ].
Unique when bounded or convergent around 0
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Review: Large Deviation Theory

Central limit theorem: O(
√
n) deviation, no rate information

Chernoff bounds: large deviation, but loose

Large deviation theorem: asymptotical, tight vanishing rate

By courtesy of Cramer (1944).
Let X1, ...Xn, ... ∈ R be i.i.d. r.v. which satisfy E[etX1 ] <∞ for
t ∈ R. Then for any t > E[X1], we have

lim
n→∞

1

n
ln Pr(

n∑
i=1

Xi ≥ tn) = − sup
λ>0

(λt− lnE[eλX1 ]).
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Bins-and-Balls: Coping with Dependence

Main idea

Approximation with independence.

Focus

Approximation.
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The Bins-and-Balls Model

General setting: (m,n)-model

Extension

Multiple choice, limited capacity of bins ...

Applications

Load balancing: balls = jobs, bins = servers;
Data storage: balls = files, bins = disks;
Hashing: balls = data keys, bins = hash table slots;
Coupon Collector: balls = coupons; bins = coupon types.
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Basic Properties

Number of balls in any bin: Bin(m, 1n).

Numbers of balls in multiple bins: not independent. Why?

Application: time complexity of bucket-sort

Bucket-sort: Given n = 2m integers from [0, 2k) with k > m, first
allocate the integers to n bins, followed by sorting each bin.
Expected time complexity: n+ E[

∑n
i=1X

2
i ] = n+ nE[X2

1 ].
X1 ∼ Bin(n, 1n), so E[X2

1 ] = 2− 1
n .
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Topics of Bins-and-Balls Model

The distribution of

Number of balls in a certain bin
Maximum load
Number of bins containing r balls
· · ·

Max. load: when does it exceed 1 w.h.p.?

The probability that max. load is 1 is

(1− 1

n
)(1− 2

n
) · · · (1− m− 1

n
) ≤

m−1∏
i=1

e−
i
n ≈ e−

m2

2n .

It is less than 1
2 if m ≥

√
2n ln 2

Birthday paradox

n = 365,m ≥ 22.49
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Max load: (n, n)-model

Asymptotically, Pr(L ≥ 3 lnn
ln lnn) ≤

1
n

Proof

Xi: the number of balls in bin i.
Pr(X1 ≥ k) ≤ (nk)

1
nk
≤ 1

k! .
kk

k! <
∑

i
ki

i! = ek ⇒ 1
k! ≤

(
e
k

)k
.

Pr

(
L ≥ 3

lnn

ln lnn

)
≤ n

(
e ln lnn

3 lnn

)3 lnn
ln lnn

≤ n
(
ln lnn

lnn

)3 lnn
ln lnn

≤ elnn+(ln ln lnn−ln lnn) 3 lnn
ln lnn ≤ 1

n
.
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Number of bins having load r: (m,n)−model

r = 0

The distribution of X ′is are identical: Bin(m, 1n).

Pr(Xi = 0) =
(
1− 1

n

)m ≈ e−mn .

Expected number of empty bins is about ne−
m
n .

Load=r

Pr(Xi = r) =
(
m
r

)
1
nr

(
1− 1

n

)m−r
.

When r � min{m,n}, Pr(Xi = r) ≈ e−
m
n
(mn )

r

r! .

Expected number of load-r bins is about ne−
m
n
(mn )

r

r! .

Poisson distribution∑
j e
−µ µj

j! = 1 due to ex =
∑

j
xj

j! .

Nonnegative-integer-valued r.v. Xµ: Pr(Xµ = j) = e−µ µ
j

j! .
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Basic Properties of Poisson distribution

Low-order moments

E[Xµ] = V ar[Xµ] = µ.

Moment generation function

MXµ(t) = E[etXµ ] =
∑

k
e−µµk

k! etk = eµ(e
t−1).

Additive

By uniqueness of moment generation functions,
Xµ1 +Xµ2 = Xµ1+µ2 if independent.

Chernoff-like bounds

1. If x > µ, then Pr(Xµ ≥ x) ≤ e−µ(eµ)x

xx .

2. If x < µ, then Pr(Xµ ≤ x) ≤ e−µ(eµ)x

xx .
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Applications and Story

Occurrences of rare events during a fixed interval

Typos per page in printed books.

Number of bomb hits per 0.25km2 in South London during
World War II.

The number of goals in sports involving two competing teams.

The number of soldiers killed by horse-kicks each year in
Prussian cavalry corps in the (late) 19th century.

Story of Poisson distribution

1837, Poisson, Research on the Probability of Judgments in
Criminal and Civil Matters.
Appeared in 1711, de Moivre. (Stigler’s law of eponymy, 1980)
First practical application (next page)
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First practical application of Poisson distribution

Reliability engineering: Ladislaus Bortkiewicz (1868-1931)

Russian economist and statistician of Polish
ancestry, mostly lived in Germany

Known for Poisson Dis. and Marxian econ.

The book The Law of Small Numbers, 1898

Annual Horse-kick data of 14 cavalry corps over 20 years

Events with low probability in a large population follow a
Poisson distribution
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Law of Small Numbers (Poisson Convergence)

Poisson convergence of binomial distribution

Assume that Xn ∼ Bin(n, pn) with limn→∞ npn = λ. For any

fixed k, limn→∞ Pr(Xn = k) = e−λλk

k! .

It is intuitively acceptable (by their figures)

It can be used to approximately calculate Binomial distribution
Bin(n, p), but take care.
n > 100, p < 0.01, np < 20.

Error bounds implies the convergence

e
p(k−np)

1−p − k(k−1)
2(n−k+1) ≤ Pr(Bin(n,p)=k)

Pr(Poi(np)=k) ≤ e
kp− k(k−1)

2n .
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Proof of the error bounds

Error bounds

e
p(k−np)

1−p − k(k−1)
2(n−k+1) ≤ Pr(Bin(n,p)=k)

Pr(Poi(np)=k) ≤ e
kp− k(k−1)

2n .

Proof

An,p,k ,
Pr(Bin(n,p)=k)
Pr(Poi(np)=k) =

∏k−1
j=1

(
1− j

n

)
enp(1− p)n−k for

0 ≤ k ≤ n and it’s 0 otherwise.

Upper bound

An,p,k ≤ e−
∑k−1
j=1

j
n
+np−(n−k)p = ekp−

k(k−1)
2n .

Lower bound

An,p,k ≥ e
−

∑k−1
j=1

j/n
1−j/n+np−(n−k)

p
1−p

= e
−

∑k−1
j=1

j
n−j−

p(np−k)
1−p ≥ e

p(k−np)
1−p − k(k−1)

2(n−k+1) .
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Generalize LSN to weak dependence

Poisson convergence with weak dependence

For each n, Bernoulli experiments Bn
1 , ...B

n
n have Yn successes, if

limn→∞ E[Yn] = λ

For any k, limn→∞
∑

1≤i1<...<ik≤n Pr(
⋂k
r=1B

n
ir
) = λk

k!

Then Yn → Poi(λ), i.e. Pr(Yn = j)→ e−λλj

j! for any j ≥ 0

Basic idea of the proof for j = 0:
Use Taylor series of e−λ and Bonferroni inequalities

Pr(
n⋃
i≥1

Bn
i ) ≤

r∑
l=1

(−1)l−1
∑

i1<i2<...<il

Pr(
l⋂

r=1
Bn
ir
) for odd r

Pr(
n⋃
i≥1

Bn
i ) ≥

r∑
l=1

(−1)l−1
∑

i1<i2<...<il

Pr(
l⋂

r=1
Bn
ir
) for even r
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Remarks on the case of weak dependence

Intuitive explanation

If X is the number of a large collection of nearly independent
events that rarely occur, the X ∼ Poi(E[X])

Application

The number of people who get their own hats back after a
random permutation of the hats

The number of pairs having the same birthday

The number of isolated vertices in random graph G(n, lnn+cn )

It can be further generalized
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Generalize LSN to strong dependence

Poisson convergence with strong dependence, 1975

Stein-Chen Theorem: If Bernoulli experiments B1, ...Bn have Yn
successes and λ = E[Yn], then for any A ⊆ Z+,

|Pr(Yn ∈ A)− Pr(Poi(λ) ∈ A)| ≤ min

{
1,

1

λ

} n∑
i=1

piE[|Ui − Vi|].

where Ui ∼ Yn, 1 + Vi ∼ Yn|Xi = 1, pi = Pr(Bi succeeds).

Intuitive explanation

Poisson approximation remains valid even if the Bernoulli r.v.s are
strongly dependent and have different expectations.
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Remarks on the law of small numbers

Law of small numbers vs Law of large numbers (CLT)

Poisson approximation vs Normal approximation

Small number vs arbitrary number

Sums of different sets vs partial sums of one sequence

Relation between Poisson and Normal distribution

Should be related since both approximate binomial distribution.
When λ→∞, Poisson converges to Normal.

Specifically, limλ→∞
∑

α<k<β
λke−λ

k! = 1√
2π

∫ b
a e
−x

2

2 dx.

Where a = (α− λ)/
√
λ, b = (β − λ)/

√
λ are fixed.

Intuitive argument

Uniqueness+continuity of moment generating functions.
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