Probabilistic Method and Random Graphs Lecture 5. Bins&Balls: Poisson Approximation and Applications ¹

Xingwu Liu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

¹The slides are mainly based on Chapter 5 of *Probability_and Computing*. \ge 0.00

Questions, comments, or suggestions?

General model: m balls independently randomly placed in n bins

Distribution of the load X of a bin: Bin(m, 1/n)

When
$$m, n \gg r$$
, $\Pr(X = r) \approx e^{-\mu \frac{\mu^r}{r!}}$ with $\mu = \frac{m}{n}$.

Poisson distribution

Poisson distribution:
$$Pr(X_{\mu} = r) = e^{-\mu} \frac{\mu^r}{r!}$$
.
Law of rare events

Rooted at Law of Small Numbers

Low-order moments

$$\mathbb{E}[X_{\mu}] = Var[X_{\mu}] = \mu.$$

Additive

By uniqueness of moment generation functions, $X_{\mu_1} + X_{\mu_2} = X_{\mu_1 + \mu_2}$ if independent.

Chernoff-like bounds

1. If $x > \mu$, then $\Pr(X_{\mu} \ge x) \le \frac{e^{-\mu}(e\mu)^x}{x^x}$. 2. If $x < \mu$, then $\Pr(X_{\mu} \le x) \le \frac{e^{-\mu}(e\mu)^x}{x^x}$.

Basic observation

Loads of multiple bins are not independent. Hard to handle

Maximum load

•
$$\Pr(L \ge 2) \ge 0.5$$
 if $m \ge \sqrt{2n \ln 2}$

• Birthday paradox

•
$$\Pr(L \ge 3 \frac{\ln n}{\ln \ln n}) \le \frac{1}{n}$$
 if $m = n$

Let's be ambitious

Is there a closed form of $Pr(X_1 = k_1, ..., X_n = k_n)$? Hard? Easy when n = 2.

Joint Distribution of Bin Loads

Theorem

$$\Pr(X_1 = k_1, \cdots, X_n = k_n) = \frac{m!}{k_1! k_2! \cdots k_n! n^m}$$

Proof.

By the chain rule,

$$\Pr(X_1 = k_1, \cdots, X_n = k_n)$$

$$= \prod_{i=0}^{n-1} \Pr(X_{i+1} = k_{i+1} | X_1 = k_1, \cdots, X_i = k_i)$$
Note that $X_{i+1} | (X_1 = k_1, \cdots, X_i = k_i)$ is a binomial r.v. of $m - (k_1 + \cdots + k_i)$ trials with success probability $\frac{1}{n-i}$.

Remark

- You can also prove by counting
- Multinomial coefficient m!//(k₁!k₂!...k_n!: the number of ways to allocate m distinct balls into groups of sizes k₁,..., k_n

In principle

Yes, since it can be computed

In practice

Usually No, since too hard to compute. Example: what's the probability of having empty bins?

In need

Approximation for computing or insights for analysis

At the first glance

The (marginal) load $X_i \sim Bin(m, \frac{1}{n})$ for each bin i. $\{X_1, \dots, X_n\}$ are not independent. But seemingly the only dependence is that their sum is m. So,

A applausible conjecture

The joint distribution $(X_1, \dots, X_n) \sim (Y_1, \dots, Y_n | \sum Y_i = m)$, where $Y_i \sim Bin(m, \frac{1}{n})$ are mutually independent

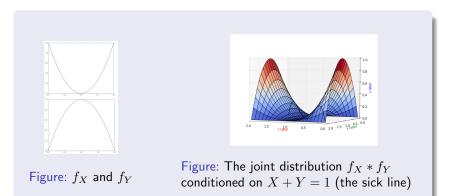
If this is true, good simplification is obtained.

However

It is NOT the case! $(Y_1, \cdots, Y_n | \sum Y_i = m)$ doesn't have marginal distr. as Y_i 's.

General Fact

 $\begin{array}{l} Y_i: \mbox{ mutual independent, } 1\leq i\leq n.\\ (Y_1,...,Y_n|g(\overrightarrow{Y})) \mbox{ doesn't have marginal distr. as } Y_i\mbox{'s.} \end{array}$



Recall the false conjecture

The joint distribution $(X_1, \dots, X_n) \sim (Y_1, \dots, Y_n | \sum Y_i = m)$, where $Y_i \sim Bin(m, \frac{1}{n})$ are mutually independent

Is the conjecture true for any distribution other than binomial?

Yes!

Poisson distribution again. (Better than the conjecture)

Poisson Approximation Theorem

Notation

$$X_i^{(m)}$$
: the load of bin *i* in (m, n) -model, $1 \le i \le n$.

 $Y_i^{(\mu)}$: independent Poisson r.v.s with expectation μ , $1 \le i \le n$.

Theorem

$$(X_1^{(m)},X_2^{(m)},...X_n^{(m)})\sim (Y_1^{(\mu)},Y_2^{(\mu)},...Y_n^{(\mu)}|\sum Y_i^{(\mu)}=m).$$

Remarks

- The equation is independent of μ : For any m, the same Poisson distribution works.
- Since $\Pr(X_1^{(m)}, X_2^{(m)}, ...X_n^{(m)}) \propto \Pr(Y_1^{(\mu)}, Y_2^{(\mu)}, ...Y_n^{(\mu)})$, the X_i 's are decoupled.
- The two distributions are exactly equal, not approximate.

Proof

By straightforward calculation.

Coupon Collector Problem

Let X be the number of purchases by n types are collected. Then for any constant c, $\lim_{n\to\infty} \Pr(X > n \ln n + cn) = 1 - e^{-e^{-c}}$.

Remark: $Pr(n \ln n - 4n \le X \le n \ln n + 4n) \ge 0.98$

Basic idea of the proof

Use bins-and-balls model and the Poisson approximation. It holds under the Poisson approximation. The approximation is actually accurate.

Modeling

 $X > n \ln n + cn$ is equivalent to event $\overline{\mathcal{E}}$, where \mathcal{E} means that there are empty bins in the $(n \ln n + cn, n)$ -Bins&Balls model.

It holds under the Poisson approximation

Approximation experiment: n bins, each having a Poisson number Y_i of balls with the expectation $\ln n + c$. Event \mathcal{E}' : No bin is empty. $\Pr(\mathcal{E}') = \left(1 - e^{-(\ln n + c)}\right)^n = \left(1 - \frac{e^{-c}}{n}\right)^n \to e^{-e^{-c}}.$

The approximation is accurate

Obj.: Asymptotically, $\Pr(\mathcal{E}) = \Pr(\mathcal{E}')$. By Poisson Approximation, $\Pr(\mathcal{E}) = \Pr(\mathcal{E}'|\sum_{i=1}^{n} Y_i = n \ln n + cn)$, so we prove $\Pr(\mathcal{E}') = \Pr(\mathcal{E}'|Y = n \ln n + cn)$ with $Y = \sum_{i=1}^{n} Y_i$.

Further reduction

Since $\Pr(\mathcal{E}') = \Pr(\mathcal{E}'|Y \in \mathbb{Z})$, there should be a neighborhood $\mathcal{N} \subset \mathbb{Z}$ s.t. $n \ln n + cn \in \mathcal{N}$ and $\Pr(\mathcal{E}') \approx \Pr(\mathcal{E}'|Y \in \mathcal{N})$. If \mathcal{N} is not too small or too big, i.e.

- $\Pr(Y \in \mathcal{N}) \approx 1;$
- $\Pr(\mathcal{E}'|Y \in \mathcal{N}) \approx \Pr(\mathcal{E}'|Y = n \ln n + cn).$

We finish the proof by total probability formula.

Does such \mathcal{N} exist?

Yes! Try the $\sqrt{2m \ln m}$ -neighborhood of $m = n \ln n + cn$.

Proof: $\Pr(|Y - m| \le \sqrt{2m \ln m}) \to 1$

Likewise, $\Pr(Y < m - \sqrt{2m \ln m}) \to 0.$

<□> <圕> <≧> < ≧> < ≧> < ≧> ≧ < つへで 15/21

Proof:
$$\Pr(\mathcal{E}'||Y-m| \le \sqrt{2m \ln m}) \approx \Pr(\mathcal{E}'|Y=m)$$

$$\begin{aligned} \Pr(\mathcal{E}'|Y = k) \text{ increases with } k \text{, so} \\ \Pr(\mathcal{E}'|Y = m - \sqrt{2m \ln m}) \\ \leq & \Pr(\mathcal{E}'||Y - m| \leq \sqrt{2m \ln m}) \\ \leq & \Pr(\mathcal{E}'|Y = m + \sqrt{2m \ln m}). \end{aligned}$$

$$|\Pr(\mathcal{E}'||Y-m| \le \sqrt{2m\ln m}) - \Pr(\mathcal{E}'|Y=m)|$$

$$\leq \Pr(\mathcal{E}'|Y = m + \sqrt{2m\ln m}) - \Pr(\mathcal{E}'|Y = m - \sqrt{2m\ln m})$$

$$=$$
 Pr(A)(By Poisson approximation)

Event A: In the $(m + \sqrt{2m \ln m})$ -Bins&Balls model, the first $m - \sqrt{2m \ln m}$ balls leave a bin empty, but at least one among the next $2\sqrt{2m \ln m}$ balls goes into this bin.

$$\Pr(A) \le \frac{2\sqrt{2m\ln m}}{n} \to 0$$

Hard to use due to conditioning.

Can we remove the condition?

Notation

$$X_i^{(m)}$$
: the load of bin *i* in (m, n) -model.

 $Y_i^{(m)}$: independent Poisson r.v.s with expectation $\frac{m}{n}$.

Theorem

For any non-negative $n\text{-}\mathrm{ary}$ function f, we have $\mathbb{E}[f(X_1^{(m)},...X_n^{(m)})] \leq e\sqrt{m}\mathbb{E}[f(Y_1^{(m)},...Y_n^{(m)})].$

Remark

Unlike $(X_1^{(m)}, X_2^{(m)}, ...X_n^{(m)}) \sim (Y_1^{(\mu)}, Y_2^{(\mu)}, ...Y_n^{(\mu)}| \sum Y_i^{(\mu)} = m)$, the mean of the Poisson distribution is $\frac{m}{n}$, not arbitrary. Condition-freedom at the cost of approximation.

Proof

$$\begin{split} \mathbb{E}[f(Y_1^{(m)}, \dots Y_n^{(m)})] \\ &= \sum_k \mathbb{E}[f(Y_1^{(m)}, \dots Y_n^{(m)})| \sum_i Y_i^{(m)} = k] \Pr(\sum_i Y_i^{(m)} = k) \\ &\geq \mathbb{E}[f(Y_1^{(m)}, \dots Y_n^{(m)})| \sum_i Y_i^{(m)} = m] \Pr(\sum_i Y_i^{(m)} = m) \\ &= \mathbb{E}[f(X_1^{(m)}, \dots X_n^{(m)})] \Pr(\sum_i Y_i^{(m)} = m). \end{split}$$

$$\begin{split} \sum_i Y_i^{(m)} \sim Poi(m) \Rightarrow \Pr(\sum_i Y_i^{(m)} = m) = \frac{m^m e^{-m}}{m!} \geq \frac{1}{e\sqrt{m}} \text{ since } \\ m! < e\sqrt{m}(me^{-1})^m. \end{split}$$

Remark

$$\mathbb{E}[f(X_1^{(m)},...X_n^{(m)})] \leq 2\mathbb{E}[f(Y_1^{(m)},...Y_n^{(m)})]$$
 if f is monotonic in m

つへで 19/21 Any event that takes place with probability p in the independent Poisson approximation experiment takes places in Bins&Balls setting with probability at most $pe\sqrt{m}$

If the probability of an event in Bins&Balls is monotonic in m, it is at most twice of that in the independent Poisson approximation experiment

Remark

Powerful in bounding the probability of rare events in Bins&Balls.

Application

Lower bound of max load in (n, n)-model

Asymptotically, $\Pr(\mathcal{E}) \leq \frac{1}{n}$, where \mathcal{E} is the event that the max load in the (n, n)-Bins&Balls model is smaller than $\frac{\ln n}{\ln \ln n}$.

Remark: In fact, the max load is $\Theta\left(\frac{\ln n}{\ln \ln n}\right)$ w.h.p.

Proof

 $\begin{array}{l} \mathcal{E}' \colon \text{Poisson approx. experiment has max load} \leq M = \frac{\ln n}{\ln \ln n}.\\ \Pr(\mathcal{E}') \leq \left(1 - \frac{1}{eM!}\right)^n \leq e^{-\frac{n}{eM!}}. \end{array}$

 $\begin{aligned} M! &\leq e\sqrt{M}(e^{-1}M)^M \leq M(e^{-1}M)^M \\ \Rightarrow \ln M! &\leq \ln n - \ln \ln n - \ln(2e) \Rightarrow M! \leq \frac{n}{2e\ln n}. \end{aligned}$

Altogether, $\Pr(\mathcal{E}) \leq e\sqrt{n} \Pr(\mathcal{E}') \leq \frac{e\sqrt{n}}{n^2} \leq \frac{1}{n}$.

∽ ९ (~ 21 / 21