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Preface

Questions, comments, or suggestions?
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Review: bins-and-balls

General model: m balls independently randomly placed in n bins

Distribution of the load X of a bin: Bin(m, 1/n)

When m,n� r, Pr(X = r) ≈ e−µ µ
r

r! with µ = m
n .

Poisson distribution

Poisson distribution: Pr(Xµ = r) = e−µ µ
r

r! .
Law of rare events
Rooted at Law of Small Numbers
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Review: Basic Properties of Poisson distribution

Low-order moments

E[Xµ] = V ar[Xµ] = µ.

Additive

By uniqueness of moment generation functions,
Xµ1 +Xµ2 = Xµ1+µ2 if independent.

Chernoff-like bounds

1. If x > µ, then Pr(Xµ ≥ x) ≤ e−µ(eµ)x

xx .

2. If x < µ, then Pr(Xµ ≤ x) ≤ e−µ(eµ)x

xx .
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Review: Joint Distribution of Bin Loads

Basic observation

Loads of multiple bins are not independent.
Hard to handle

Maximum load

Pr(L ≥ 2) ≥ 0.5 if m ≥
√

2n ln 2

Birthday paradox

Pr(L ≥ 3 lnn
ln lnn) ≤ 1

n if m = n

Let’s be ambitious

Is there a closed form of Pr(X1 = k1, ...Xn = kn)?
Hard? Easy when n = 2.
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Joint Distribution of Bin Loads

Theorem

Pr(X1 = k1, · · · , Xn = kn) = m!
k1!k2!···kn!nm

Proof.

By the chain rule,
Pr(X1 = k1, · · · , Xn = kn)

=
∏n−1
i=0 Pr(Xi+1 = ki+1|X1 = k1, · · · , Xi = ki)

Note that Xi+1|(X1 = k1, · · · , Xi = ki) is a binomial r.v. of
m− (k1 + · · ·+ ki) trials with success probability 1

n−i .

Remark

You can also prove by counting
Multinomial coefficient m!

k1!k2!···kn! : the number of ways to
allocate m distinct balls into groups of sizes k1, · · · , kn
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Silver bullet for Bins&Balls problems?

In principle

Yes, since it can be computed

In practice

Usually No, since too hard to compute.
Example: what’s the probability of having empty bins?

In need

Approximation for computing or insights for analysis
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Poisson Approximation

At the first glance

The (marginal) load Xi ∼ Bin(m, 1n) for each bin i .
{X1, · · · , Xn} are not independent.
But seemingly the only dependence is that their sum is m. So,

A applausible conjecture

The joint distribution (X1, · · · , Xn) ∼ (Y1, · · · , Yn|
∑
Yi = m),

where Yi ∼ Bin(m, 1n) are mutually independent

If this is true, good simplification is obtained.

However

It is NOT the case!
(Y1, · · · , Yn|

∑
Yi = m) doesn’t have marginal distr. as Yi’s.
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General Fact

Yi: mutual independent, 1 ≤ i ≤ n.

(Y1, ..., Yn|g(
−→
Y )) doesn’t have marginal distr. as Yi’s.

Figure: fX and fY
Figure: The joint distribution fX ∗ fY
conditioned on X + Y = 1 (the sick line)
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Recall the false conjecture

The joint distribution (X1, · · · , Xn) ∼ (Y1, · · · , Yn|
∑
Yi = m),

where Yi ∼ Bin(m, 1n) are mutually independent

Is the conjecture true for any distribution other than binomial?

Yes!

Poisson distribution again. (Better than the conjecture)
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Poisson Approximation Theorem

Notation

X
(m)
i : the load of bin i in (m,n)-model, 1 ≤ i ≤ n.

Y
(µ)
i : independent Poisson r.v.s with expectation µ, 1 ≤ i ≤ n.

Theorem

(X
(m)
1 , X

(m)
2 , ...X

(m)
n ) ∼ (Y

(µ)
1 , Y

(µ)
2 , ...Y

(µ)
n |

∑
Y

(µ)
i = m).

Remarks

The equation is independent of µ: For any m, the same
Poisson distribution works.
Since Pr(X

(m)
1 , X

(m)
2 , ...X

(m)
n ) ∝ Pr(Y

(µ)
1 , Y

(µ)
2 , ...Y

(µ)
n ), the

Xi’s are decoupled.
The two distributions are exactly equal, not approximate.

Proof

By straightforward calculation.
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Example

Coupon Collector Problem

Let X be the number of purchases by n types are collected. Then
for any constant c, limn→∞ Pr(X > n lnn+ cn) = 1− e−e−c .

Remark: Pr(n lnn− 4n ≤ X ≤ n lnn+ 4n) ≥ 0.98

Basic idea of the proof

Use bins-and-balls model and the Poisson approximation.
It holds under the Poisson approximation.
The approximation is actually accurate.

12 / 21



Proof

Modeling

X > n lnn+ cn is equivalent to event E , where E means that
there are empty bins in the (n lnn+ cn, n)-Bins&Balls model.

It holds under the Poisson approximation

Approximation experiment: n bins, each having a Poisson number
Yi of balls with the expectation lnn+ c.
Event E ′: No bin is empty.

Pr(E ′) =
(
1− e−(lnn+c)

)n
=
(

1− e−c

n

)n
→ e−e

−c
.

The approximation is accurate

Obj.: Asymptotically, Pr(E) = Pr(E ′).
By Poisson Approximation, Pr(E) = Pr(E ′|

∑n
i=1 Yi = n lnn+ cn),

so we prove Pr(E ′) = Pr(E ′|Y = n lnn+ cn) with Y =
∑n

i=1 Yi.
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Proof: Pr(E ′) = Pr(E ′|Y = n lnn+ cn)

Further reduction

Since Pr(E ′) = Pr(E ′|Y ∈ Z), there should be a neighborhood
N ⊂ Z s.t. n lnn+ cn ∈ N and Pr(E ′) ≈ Pr(E ′|Y ∈ N ).
If N is not too small or too big, i.e.

Pr(Y ∈ N ) ≈ 1;

Pr(E ′|Y ∈ N ) ≈ Pr(E ′|Y = n lnn+ cn).

We finish the proof by total probability formula.

Does such N exist?

Yes! Try the
√

2m lnm-neighborhood of m = n lnn+ cn.
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Proof: Pr(|Y −m| ≤
√
2m lnm)→ 1

Y ∼ Poi(m).

By Chernoff bound Pr(Y ≥ y) ≤ e−m(em)y

yy = ey−m−y ln
y
m ,

Pr(Y > m+
√

2m lnm) ≤ e
√
2m lnm−(m+

√
2m lnm) ln(1+

√
2 lnm
m

)

by ln(1 + z) ≥ z − z2/2 for z ≥ 0

≤ e− lnm+ ln3/2m√
m → 0.

Likewise, Pr(Y < m−
√

2m lnm)→ 0.
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Proof: Pr(E ′||Y −m| ≤
√
2m lnm) ≈ Pr(E ′|Y = m)

Pr(E ′|Y = k) increases with k, so

Pr(E ′|Y = m−
√

2m lnm)

≤ Pr(E ′||Y −m| ≤
√

2m lnm)

≤ Pr(E ′|Y = m+
√

2m lnm).

|Pr(E ′||Y −m| ≤
√

2m lnm)− Pr(E ′|Y = m)|
≤ Pr(E ′|Y = m+

√
2m lnm)− Pr(E ′|Y = m−

√
2m lnm)

= Pr(A)(By Poisson approximation).

Event A: In the (m+
√

2m lnm)-Bins&Balls model, the first
m−

√
2m lnm balls leave a bin empty, but at least one among the

next 2
√

2m lnm balls goes into this bin.

Pr(A) ≤ 2
√
2m lnm
n → 0
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Poisson approximation is nice but ...

Hard to use due to conditioning.

Can we remove the condition?
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Condition-free Poisson Approximation

Notation

X
(m)
i : the load of bin i in (m,n)-model.

Y
(m)
i : independent Poisson r.v.s with expectation m

n .

Theorem

For any non-negative n-ary function f , we have

E[f(X
(m)
1 , ...X

(m)
n )] ≤ e

√
mE[f(Y

(m)
1 , ...Y

(m)
n )].

Remark

Unlike (X
(m)
1 , X

(m)
2 , ...X

(m)
n ) ∼ (Y

(µ)
1 , Y

(µ)
2 , ...Y

(µ)
n |

∑
Y

(µ)
i = m),

the mean of the Poisson distribution is m
n , not arbitrary.

Condition-freedom at the cost of approximation.
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Proof

E[f(Y
(m)
1 , ...Y (m)

n )]

=
∑
k

E[f(Y
(m)
1 , ...Y (m)

n )|
∑
i

Y
(m)
i = k] Pr(

∑
i

Y
(m)
i = k)

≥ E[f(Y
(m)
1 , ...Y (m)

n )|
∑
i

Y
(m)
i = m] Pr(

∑
i

Y
(m)
i = m)

= E[f(X
(m)
1 , ...X(m)

n )] Pr(
∑
i

Y
(m)
i = m).

∑
i Y

(m)
i ∼ Poi(m)⇒ Pr(

∑
i Y

(m)
i = m) = mme−m

m! ≥ 1
e
√
m

since

m! < e
√
m(me−1)m.

Remark

E[f(X
(m)
1 , ...X

(m)
n )] ≤ 2E[f(Y

(m)
1 , ...Y

(m)
n )] if f is monotonic in m
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In Terms of Probability

Any event that takes place with probability p in the independent
Poisson approximation experiment takes places in Bins&Balls
setting with probability at most pe

√
m

If the probability of an event in Bins&Balls is monotonic in m, it is
at most twice of that in the independent Poisson approximation
experiment

Remark

Powerful in bounding the probability of rare events in Bins&Balls.
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Application

Lower bound of max load in (n, n)-model

Asymptotically, Pr(E) ≤ 1
n , where E is the event that the max load

in the (n, n)-Bins&Balls model is smaller than lnn
ln lnn .

Remark: In fact, the max load is Θ
(

lnn
ln lnn

)
w.h.p.

Proof

E ′: Poisson approx. experiment has max load ≤M = lnn
ln lnn .

Pr(E ′) ≤
(
1− 1

eM !

)n ≤ e− n
eM ! .

M ! ≤ e
√
M(e−1M)M ≤M(e−1M)M

⇒ lnM ! ≤ lnn− ln lnn− ln(2e)⇒M ! ≤ n
2e lnn .

Altogether, Pr(E) ≤ e
√
nPr(E ′) ≤ e

√
n

n2 ≤ 1
n .
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