Probabilistic Method and Random Graphs

Lecture 6. Hashing and Random Graphs ?

Xingwu Liu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

!The slides are mainly based on Chapter 5 of the textbook Probability and
Computing and Lectures 12&13 of Ryan O’Donnell’s lecture notes of

Probability and Computing.
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Questions, comments, or suggestions? )
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A recap of Lecture 5
Joint distribution of bin loads

PI’(Xl = kl, Xn = kn) = W

v

Poisson approximation theorem

o (X{™, X, XY~ (8,0, Y| TES = m)
o E[f(X{"™, . X{")] < ey/mEf (¥{™, .. ";™)

o Pr((Xx™, . X{™)) < eymPr XY™, .. ¥i{™))
e ey/m can be improved to 2, if f is monotonic in m

Applications

| \

@ For the coupon collector’s problem,
limy, oo Pr(X >nlnn+cn)=1—-e¢

e Max load: L(n,n) >

=@

I with high probability

In
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Application: Hashing

Used to look up records, protect data, find duplications ...

Membership problem: password checker

Binary search vs Hashing

Hash table (1953, H. P. Luhn @IBM)

Hash functions: efficient, deterministic, uniform, non-invertible
Random: coin tossing, SUHA
SHA-1 (broken by Wang et al., 2005)

Bins&Balls model

Efficiency

| \

Search time for m words in n bins: expected vs worst.

Space: >256m bits if each word has 256 bits.
Potential wasted space: % in the case of m = n.

Trade space for time. Can we improve space-efficiency?
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Information Fingerprint

Fingerprint

Succinct identification of lengthy information

Fingerprint hashing

Fingerprinting ~~ sorting fingerprints (rather than original data)
~> binary search.

Trade time for space

Performance

| A

False positive: due to loss of information
No other errors
Partial correction using white lists
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False positive
Probability of a false positive: m words, b bits

Fingerprint of an acceptable differs from that of a bad: 1 — 2%
Probability of a false positive: 1 — (1 — 2—1;,)7” >1-— e b

Determine b

For a constant ¢, false positive < ¢ = e 2 >1—c.

So, b > logy sy = Q(lnm).

If b > 2log, m, false positive < %
216 words, 32-bit fingerprints, false positive < 2716
Save a factor of 8 if each word has 256 bits.

Can more space be saved while getting more time-efficient? J
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Bloom Filter

1970, CACM, by Burton H. Bloom. |

Used in Bigtable and HBase. |

Basic idea

Hash table + fingerprinting
[llustration

False positive is the only source of errors. |

False positive: m words, n-bit array, & mappings

Resonable to assume that a fraction p of bits are 0.
By Poisson approximation and Chernoff bounds.

k k
False positive probability: f £ (1 -(1- %)km) ~ (1 — e‘T)
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Determine k for fixed m,n

Objective
Minimize f.
Dilemma of k: chances to find a 0-bit vs the fraction of 0-bits.

Optimal k

dl _km s
dr];lel'l(l—e ")‘i‘k?mliefkTm
dln f

ak ‘k:%an = 0.
fle=z1m2 = 27% &~ 0.6185™/™.
f<0.02if n=28m, and f <2710 if n = 23m, saving 1/4 space

Remark

Fix n/m, the #bits per item, and get a constant error probability.
In fingerprint hashing, Q(Inm) bits per item guarantee a constant
error probability
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An Introduction to Random Graphs

9/22



Motivation of studying random graphs

Web link network: Teras of vertices and edges

Phone network: Billions of vertices and edges

°
@ Facebook user network: Billions of vertices and edges

@ Human neural networks: 86 Billion vertices, 10 — 10® edges
°

Network of Twitter users, wiki pages ...: size up to milllions

V.

What do they look like?

@ Impossible to draw and look
@ What's meant by ‘look like'?
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Looking through statistical lens

@ How dense are the edges, m = O(n) or ©(n?)?
@ Is it connected?

e If not connected, the distribution of component size
o If connected, diameter

@ What's the degree distribution?
@ What's the girth? How many triangles are there?

Feasible for a single graph?

Yes, but not of the
style of a scientist
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Scientists’' concerns

Interconnection

@ Do the features necessarily or just happen to appear?
@ Do various gigantic graphs have common statistical features?

@ What accounts for the statistical difference between them?

@ What will a newly created gigantic graph be like?

@ How is one statistical feature, given some others?

<

Exploitation (algorithmical)

@ How do the features help algorithms? Say, routing, marketing

@ What properties of the graphs determine the performance?

Key to solution

Modelling gigantic graphs; random graphs are the best candidate
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Definition of random graphs

Intuition: stochastic experiments

@ God plays a dice, resulting in a random number
@ God plays an amazing toy, resulting in a random graph
e Amazing toy: a big dice with a graph on each facet

Axiomatic definition of random graphs

Random graph with n vertices

@ Sample space: all graphs on n vertices
@ Events: every subset of the sample space is an event

@ Probability function: any normalized non-negative function on
the sample space
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An example

Gr: uniform random graph on n vertices

The probability function has equal value on all graphs

Simple questions on G,
Random variable X : G +— the number of edges of G

e What's E[X]?
e What's Var[X]?

Tough? Not easy, at least.
Big names appeared!
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A generative model of random graphs

Stochastic process:
input: n and p € [0, 1] Proposed in 1959 by Gilbert
output: indicators Fj;; (1923-2013, American coding
fori=1-n theorist and mathematician).
forj=i+1-n Motivated by phone networks.
E;j < Bernoulli(p)

v

In one word

Gn.p is an n-vertex graph the existence of each of whose edges is
independently determined by tossing a p-coin.

Erdos&Rényi get the naming credit due to extensive work

e
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1
2

An example: p =

Uniform distribution over n-vertex graphs

G, 1 ~ Gy, the axiomatic definition
What does it look like?

»
N

The number of edges

In gnyl, the number of edges has Bin ((g), %) distribution.

2
. . n(n—1)
Expectation: ———*.
Variance: @.
n—1

The expected degree of vertex i: “5=
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Homogeneous degree distribution

Concentration theorem

n

In G, 1, all vertices have degree between 5 — v/nlnn and
2

5 +Vvnlnn w.h.p.
Proof: Chernoff bound 4+ Union Bound

Let D; be the degree of vertex 1.

Pr(D; > 5+ vnlnn) < e=(@Vinn)?/2 — =2

Likewise, Pr(D; < % — vnlnn) <n~2

By union bound, Pr(5 —vnlnn < D; < § —+/nlnn for all i) >
1= 20 =1-0(3)

A\
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Another generative model of random graphs

gn ,m

Randomly independently assign m edges among n vertices.
Equiv: All n-vertex m-edge graphs, uniformly distributed.

\

Proposed by Erdos&Rényi in 1959, and

independently by Austin, Fagen, Penney and Riordan in 1959.
Hard to study, due to dependency among edges.
Can we decouple the edges? Yes, sort of.

| \

Decoupling the edges

Gnm ~ Gnpl(m edges exist)
Recall the Poisson Approximation Theorem

Both are called Erdos-Rényi model.
Gn,p is more popular.
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Application of the decoupling

Probability of having isolated vertices

In random graph G, with m = ”h”‘% the probability that

=@

there is an isolated vertex converges to 1 — e~ ¢

A

Proof (By myself)

Basically, follow the proof of the theorem about coupon collecting.

It is reduced to G, , with p = lnn%

A\

Problem reduction

In G, p with p = 1“”% the probability that there is an isolated

vertex converges to 1 — e~ ¢
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E;: the event that vertex v; is isolated in G, .
E: the event that at least one vertex is isolated in Gy, .
Pr(E) = Pr(U., )

— n k k

= =2 1 (01" X<y cin< <ip<n PN 21 Eij).

By Bonferroni inequalities,
l
Pr(E) < — Y o1 (—1)* Y1 i . cip<n Pr(NF_ Ey), for odd 1.

nk— k(D)

_ k(k—1)
Pr(nf_, E;;) = (1 - p)"PE757 = (1 —p)

Pr(E) < - Yh_, (-1 @ (1—p)™ "5 for odd I

k!

n _ k(1) —k)k _ k(kt1) ok
(k) L=p)™ 2 > (nk!) A-pm™ " "= g

k(k k(k+1) —c
1) (1=t < gk e e
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Continued proof

For odd {
—_— —c\k _,—c\k
limy, o Pr(E) < — 300 _ 1 S L=1- ZL:O %
For even [, likewise

c\k 1 —_e—¢ k
hmn—>00 ( )> Zk 1 !) :1_Zk:0( k:!)

| \

Altogether

Let [ go to infinity. We have
Pr(E) = lim;, 400 Pr(E) =1 —e7¢

c

1 C
My,

So, limy, 4o Pr(E) =1—€¢"¢

N
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Reference

Lectures 12&13 of the CMU lecture notes by Ryan O’Donnell. J
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