Probabilistic Method and Random Graphs Lecture 6. Hashing and Random Graphs ¹

Xingwu Liu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

¹The slides are mainly based on Chapter 5 of the textbook *Probability and Computing* and Lectures 12&13 of Ryan O'Donnell's lecture notes of *Probability and Computing*.

Questions, comments, or suggestions?

A recap of Lecture 5

Joint distribution of bin loads

$$\Pr(X_1 = k_1, ..., X_n = k_n) = \frac{m!}{k_1! k_2! \cdots k_n! n^m}$$

Poisson approximation theorem

•
$$(X_1^{(m)}, X_2^{(m)}, ...X_n^{(m)}) \sim (Y_1^{(\mu)}, Y_2^{(\mu)}, ...Y_n^{(\mu)} | \sum Y_i^{(\mu)} = m)$$

• $\mathbb{E}[f(X_1^{(m)}, ...X_n^{(m)})] \le e\sqrt{m}\mathbb{E}[f(Y_1^{(m)}, ...Y_n^{(m)})]$
• $\Pr(\mathcal{E}(X_1^{(m)}, ...X_n^{(m)})) \le e\sqrt{m}\Pr(\mathcal{E}(Y_1^{(m)}, ...Y_n^{(m)}))$

• $e\sqrt{m}$ can be improved to 2, if f is monotonic in m

Applications

- For the coupon collector's problem, $\lim_{n\to\infty} \Pr(X > n \ln n + cn) = 1 - e^{-e^{-c}}$
- Max load: $L(n,n) > \frac{\ln n}{\ln \ln n}$ with high probability

Application: Hashing

Used to look up records, protect data, find duplications ...

Membership problem: password checker

Binary search vs Hashing

Hash table (1953, H. P. Luhn @IBM)

Hash functions: efficient, deterministic, uniform, non-invertible Random: coin tossing, SUHA SHA-1 (broken by Wang et al., 2005) Bins&Balls model

Efficiency

Search time for m words in n bins: expected vs worst. Space: $\geq 256m$ bits if each word has 256 bits. Potential wasted space: $\frac{1}{e}$ in the case of m = n. Trade space for time. Can we improve space-efficiency?

Fingerprint

Succinct identification of lengthy information

Fingerprint hashing

Fingerprinting \rightsquigarrow sorting fingerprints (rather than original data) \rightsquigarrow binary search.

Trade time for space

Performance

False positive: due to loss of information No other errors Partial correction using white lists

Probability of a false positive: m words, b bits

Fingerprint of an acceptable differs from that of a bad: $1 - \frac{1}{2^b}$. Probability of a false positive: $1 - \left(1 - \frac{1}{2^b}\right)^m \ge 1 - e^{-\frac{m}{2^b}}$.

Determine b

For a constant c, false positive $< c \Rightarrow e^{-\frac{m}{2b}} \ge 1 - c$. So, $b \ge \log_2 \frac{-m}{\ln(1-c)} = \Omega(\ln m)$. If $b \ge 2\log_2 m$, false positive $< \frac{1}{m}$. 2^{16} words, 32-bit fingerprints, false positive $< 2^{-16}$. Save a factor of 8 if each word has 256 bits.

Can more space be saved while getting more time-efficient?

Bloom Filter

1970, CACM, by Burton H. Bloom.

Used in Bigtable and HBase.

Basic idea

Hash table + fingerprinting Illustration

False positive is the only source of errors.

False positive: m words, n-bit array, k mappings

A specific bit is 0 with probability $(1 - \frac{1}{n})^{km} \approx e^{-\frac{km}{n}} \triangleq p$. Resonable to assume that a fraction p of bits are 0. By Poisson approximation and Chernoff bounds. False positive probability: $f \triangleq (1 - (1 - \frac{1}{n})^{km})^k \approx (1 - e^{-\frac{km}{n}})^k$

Determine k for fixed m, n

Objective

Minimize f. Dilemma of k: chances to find a 0-bit vs the fraction of 0-bits.

Optimal k

$$\begin{split} \frac{d \ln f}{dk} &= \ln \left(1 - e^{-\frac{km}{n}} \right) + \frac{km}{n} \frac{e^{-\frac{km}{n}}}{1 - e^{-\frac{km}{n}}}.\\ \frac{d \ln f}{dk}|_{k=\frac{n}{m}\ln 2} &= 0.\\ f|_{k=\frac{n}{m}\ln 2} &= 2^{-k} \approx 0.6185^{n/m}.\\ f &< 0.02 \text{ if } n = 8m, \text{ and } f < 2^{-16} \text{ if } n = 23m, \text{ saving 1/4 space} \end{split}$$

Remark

Fix n/m, the #bits per item, and get a constant error probability. In fingerprint hashing, $\Omega(\ln m)$ bits per item guarantee a constant error probability

An Introduction to Random Graphs

Motivation of studying random graphs

Gigantic graphs are ubiquitous

- Web link network: Teras of vertices and edges
- Phone network: Billions of vertices and edges
- Facebook user network: Billions of vertices and edges
- Human neural networks: 86 Billion vertices, $10^{14} 10^{15}$ edges
- Network of Twitter users, wiki pages ...: size up to millions

What do they look like?

- Impossible to draw and look
- What's meant by 'look like'?

Looking through statistical lens

Part of the statistics

- How dense are the edges, m = O(n) or $\Theta(n^2)$?
- Is it connected?
 - If not connected, the distribution of component size
 - If connected, diameter
- What's the degree distribution?
- What's the girth? How many triangles are there?

Feasible for a single graph?

Yes, but not of the style of a **scientist**

Scientists' concerns

Interconnection

- Do the features necessarily or just happen to appear?
- Do various gigantic graphs have common statistical features?
- What accounts for the statistical difference between them?

Prediction

- What will a newly created gigantic graph be like?
- How is one statistical feature, given some others?

Exploitation (algorithmical)

- How do the features help algorithms? Say, routing, marketing
- What properties of the graphs determine the performance?

Key to solution

Modelling gigantic graphs; random graphs are the best candidate

Intuition: stochastic experiments

- God plays a dice, resulting in a random number
- God plays an amazing toy, resulting in a random graph
 - Amazing toy: a big dice with a graph on each facet

Axiomatic definition of random graphs

Random graph with n vertices

- Sample space: all graphs on n vertices
- Events: every subset of the sample space is an event
- Probability function: any normalized non-negative function on the sample space

\mathcal{G}_n : uniform random graph on n vertices

The probability function has equal value on all graphs

Simple questions on \mathcal{G}_n

Random variable $X: G \mapsto$ the number of edges of G

- What's $\mathbb{E}[X]$?
- What's Var[X]?

Tough? Not easy, at least. Big names appeared!

・ロト (日) (目) (目) (日) (14/22

$\mathcal{G}_{n,p}$

Stochastic process:

 $\begin{array}{ll} \text{input: } n \text{ and } p \in [0,1] \\ \text{output: indicators } E_{ij} \\ \text{for } i = 1 \cdots n \\ \text{for } j = i + 1 \cdots n \\ E_{ij} \leftarrow \text{Bernoulli}(p) \end{array}$

Proposed in 1959 by Gilbert (1923-2013, American coding theorist and mathematician). Motivated by phone networks.

In one word

 $\mathcal{G}_{n,p}$ is an *n*-vertex graph the existence of each of whose edges is independently determined by tossing a *p*-coin.

Erdös&Rényi get the naming credit due to extensive work

Uniform distribution over *n*-vertex graphs

 $\mathcal{G}_{n,\frac{1}{2}}\sim \mathcal{G}_n$, the axiomatic definition What does it look like?

The number of edges

In $\mathcal{G}_{n,\frac{1}{2}}$, the number of edges has $Bin\left(\binom{n}{2},\frac{1}{2}\right)$ distribution. Expectation: $\frac{n(n-1)}{4}$. Variance: $\frac{n(n-1)}{8}$. The expected degree of vertex i: $\frac{n-1}{2}$

Concentration theorem

In $\mathcal{G}_{n+1,\frac{1}{2}}$, all vertices have degree between $\frac{n}{2} - \sqrt{n \ln n}$ and $\frac{n}{2} + \sqrt{n \ln n}$ w.h.p.

Proof: Chernoff bound + Union Bound

Let D_i be the degree of vertex i. $\Pr(D_i > \frac{n}{2} + \sqrt{n \ln n}) \le e^{-(2\sqrt{\ln n})^2/2} = n^{-2}$. Likewise, $\Pr(D_i < \frac{n}{2} - \sqrt{n \ln n}) \le n^{-2}$. By union bound, $\Pr(\frac{n}{2} - \sqrt{n \ln n} \le D_i \le \frac{n}{2} - \sqrt{n \ln n}$ for all $i) \ge 1 - \frac{2(n+1)}{n^2} = 1 - O(\frac{1}{n})$

Another generative model of random graphs

$\mathcal{G}_{n,m}$

Randomly *independently* assign m edges among n vertices. Equiv: All n-vertex m-edge graphs, uniformly distributed.

Proposed by Erdös&Rényi in 1959, and independently by Austin, Fagen, Penney and Riordan in 1959.Hard to study, due to dependency among edges.Can we decouple the edges? Yes, sort of.

Decoupling the edges

 $\mathcal{G}_{n,m} \sim \mathcal{G}_{n,p} | (m \text{ edges exist})$ Recall the Poisson Approximation Theorem

Both are called Erdös-Rényi model. $\mathcal{G}_{n,p}$ is more popular.

Probability of having isolated vertices

In random graph $\mathcal{G}_{n,m}$ with $m = \frac{n \ln n + cn}{2}$, the probability that there is an isolated vertex converges to $1 - e^{-e^{-c}}$.

Proof (By myself)

Basically, follow the proof of the theorem about coupon collecting. It is reduced to $\mathcal{G}_{n,p}$ with $p = \frac{\ln n + c}{n}$.

Problem reduction

In $\mathcal{G}_{n,p}$ with $p = \frac{\ln n + c}{n}$, the probability that there is an isolated vertex converges to $1 - e^{-e^{-c}}$.

Proof

$$\begin{split} E_i: & \text{the event that vertex } v_i \text{ is isolated in } \mathcal{G}_{n,p}. \\ E: & \text{the event that at least one vertex is isolated in } \mathcal{G}_{n,p}. \\ \Pr(E) &= \Pr(\cup_{i=1}^n E_i) \\ &= -\sum_{k=1}^n (-1)^k \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n} \Pr(\cap_{j=1}^k E_{i_j}). \end{split}$$

By Bonferroni inequalities, $\Pr(E) \leq -\sum_{k=1}^{l} (-1)^k \sum_{1 \leq i_1 < \ldots < i_k \leq n} \Pr(\cap_{j=1}^k E_{i_j}), \text{for odd } l.$

$$\Pr(\bigcap_{j=1}^{k} E_{i_j}) = (1-p)^{(n-k)k + \frac{k(k-1)}{2}} = (1-p)^{nk - \frac{k(k+1)}{2}}.$$

$$\Pr(E) \le -\sum_{k=1}^{l} (-1)^k \binom{n}{k} (1-p)^{nk - \frac{k(k+1)}{2}}, \text{ for odd } l.$$

$$\binom{n}{k} (1-p)^{nk-\frac{k(k+1)}{2}} > \frac{(n-k)^k}{k!} (1-p)^{nk-\frac{k(k+1)}{2}} \stackrel{n \to \infty}{=} \frac{e^{-ck}}{k!}.$$
$$\binom{n}{k} (1-p)^{nk-\frac{k(k+1)}{2}} < \frac{n^k}{k!} (1-p)^{nk-\frac{k(k+1)}{2}} \stackrel{n \to \infty}{=} \frac{e^{-ck}}{k!}$$

= ♥) Q (0 20 / 22

For odd l

$$\overline{\lim}_{n \to \infty} \Pr(E) \le -\sum_{k=1}^{l} \frac{(-e^{-c})^k}{k!} = 1 - \sum_{k=0}^{l} \frac{(-e^{-c})^k}{k!}$$

For even l, likewise

$$\underline{\lim}_{n \to \infty} \Pr(E) \ge -\sum_{k=1}^{l} \frac{(-e^{-c})^k}{k!} = 1 - \sum_{k=0}^{l} \frac{(-e^{-c})^k}{k!}$$

Altogether

Let
$$l$$
 go to infinity. We have
 $\underline{\lim}_{n\to\infty} \Pr(E) = \overline{\lim}_{n\to\infty} \Pr(E) = 1 - e^{-e^{-c}}$
So, $\lim_{n\to\infty} \Pr(E) = 1 - e^{-e^{-c}}$

・ロ ・ ・ 一 ・ ・ 注 ・ ・ 注 ・ う へ (* 21/22

Lectures 12&13 of the CMU lecture notes by Ryan O'Donnell.