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1The slides are mainly based on Chapter 5 of the textbook Probability and
Computing and Lectures 12&13 of Ryan O’Donnell’s lecture notes of
Probability and Computing.
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Preface

Questions, comments, or suggestions?
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A recap of Lecture 5

Joint distribution of bin loads

Pr(X1 = k1, ...Xn = kn) = m!
k1!k2!···kn!nm

Poisson approximation theorem
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Applications

For the coupon collector’s problem,
limn→∞ Pr(X > n lnn + cn) = 1− e−e

−c

Max load: L(n, n) > lnn
ln lnn with high probability
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Application: Hashing

Used to look up records, protect data, find duplications ...

Membership problem: password checker

Binary search vs Hashing

Hash table (1953, H. P. Luhn @IBM)

Hash functions: efficient, deterministic, uniform, non-invertible
Random: coin tossing, SUHA
SHA-1 (broken by Wang et al., 2005)

Bins&Balls model

Efficiency

Search time for m words in n bins: expected vs worst.
Space: ≥256m bits if each word has 256 bits.

Potential wasted space: 1
e in the case of m = n.

Trade space for time. Can we improve space-efficiency?
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Information Fingerprint

Fingerprint

Succinct identification of lengthy information

Fingerprint hashing

Fingerprinting  sorting fingerprints (rather than original data)
 binary search.

Trade time for space

Performance

False positive: due to loss of information
No other errors
Partial correction using white lists
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False positive

Probability of a false positive: m words, b bits

Fingerprint of an acceptable differs from that of a bad: 1− 1
2b

.

Probability of a false positive: 1−
(
1− 1

2b

)m ≥ 1− e
−m

2b .

Determine b

For a constant c, false positive < c⇒ e
−m

2b ≥ 1− c.
So, b ≥ log2

−m
ln(1−c) = Ω(lnm).

If b ≥ 2 log2m, false positive < 1
m .

216 words, 32-bit fingerprints, false positive < 2−16.
Save a factor of 8 if each word has 256 bits.

Can more space be saved while getting more time-efficient?
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Bloom Filter

1970, CACM, by Burton H. Bloom.

Used in Bigtable and HBase.

Basic idea

Hash table + fingerprinting
Illustration

False positive is the only source of errors.

False positive: m words, n-bit array, k mappings

A specific bit is 0 with probability
(
1− 1

n

)km ≈ e−
km
n , p.

Resonable to assume that a fraction p of bits are 0.
By Poisson approximation and Chernoff bounds.

False positive probability: f ,
(

1−
(
1− 1

n

)km)k ≈ (1− e−
km
n

)k
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Determine k for fixed m,n

Objective

Minimize f .
Dilemma of k: chances to find a 0-bit vs the fraction of 0-bits.

Optimal k

d ln f
dk = ln

(
1− e−

km
n

)
+ km

n
e−

km
n

1−e−
km
n

.

d ln f
dk |k= n

m
ln 2 = 0.

f |k= n
m

ln 2 = 2−k ≈ 0.6185n/m.

f < 0.02 if n = 8m, and f < 2−16 if n = 23m, saving 1/4 space

Remark

Fix n/m, the #bits per item, and get a constant error probability.
In fingerprint hashing, Ω(lnm) bits per item guarantee a constant
error probability
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An Introduction to Random Graphs
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Motivation of studying random graphs

Gigantic graphs are ubiquitous

Web link network: Teras of vertices and edges

Phone network: Billions of vertices and edges

Facebook user network: Billions of vertices and edges

Human neural networks: 86 Billion vertices, 1014 − 1015 edges

Network of Twitter users, wiki pages ...: size up to milllions

What do they look like?

Impossible to draw and look

What’s meant by ‘look like’?
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Looking through statistical lens

Part of the statistics

How dense are the edges, m = O(n) or Θ(n2)?

Is it connected?

If not connected, the distribution of component size
If connected, diameter

What’s the degree distribution?

What’s the girth? How many triangles are there?

Feasible for a single graph?

Yes, but not of the
style of a scientist
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Scientists’ concerns

Interconnection

Do the features necessarily or just happen to appear?

Do various gigantic graphs have common statistical features?

What accounts for the statistical difference between them?

Prediction

What will a newly created gigantic graph be like?

How is one statistical feature, given some others?

Exploitation (algorithmical)

How do the features help algorithms? Say, routing, marketing

What properties of the graphs determine the performance?

Key to solution

Modelling gigantic graphs; random graphs are the best candidate
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Definition of random graphs

Intuition: stochastic experiments

God plays a dice, resulting in a random number

God plays an amazing toy, resulting in a random graph

Amazing toy: a big dice with a graph on each facet

Axiomatic definition of random graphs

Random graph with n vertices

Sample space: all graphs on n vertices

Events: every subset of the sample space is an event

Probability function: any normalized non-negative function on
the sample space
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An example

Gn: uniform random graph on n vertices

The probability function has equal value on all graphs

Simple questions on Gn
Random variable X : G 7→ the number of edges of G

What’s E[X]?

What’s V ar[X]?

Tough? Not easy, at least.
Big names appeared!
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A generative model of random graphs

Gn,p
Stochastic process:

input: n and p ∈ [0, 1]
output: indicators Eij

for i = 1 · ·n
for j = i + 1 · ·n
Eij ← Bernoulli(p)

Proposed in 1959 by Gilbert
(1923-2013, American coding
theorist and mathematician).
Motivated by phone networks.

In one word

Gn,p is an n-vertex graph the existence of each of whose edges is
independently determined by tossing a p-coin.

Erdös&Rényi get the naming credit due to extensive work
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An example: p = 1
2

Uniform distribution over n-vertex graphs

Gn, 1
2
∼ Gn, the axiomatic definition

What does it look like?

The number of edges

In Gn, 1
2

, the number of edges has Bin
((
n
2

)
, 12
)

distribution.

Expectation: n(n−1)
4 .

Variance: n(n−1)
8 .

The expected degree of vertex i: n−1
2
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Homogeneous degree distribution

Concentration theorem

In Gn+1, 1
2

, all vertices have degree between n
2 −
√
n lnn and

n
2 +
√
n lnn w.h.p.

Proof: Chernoff bound + Union Bound

Let Di be the degree of vertex i.

Pr(Di >
n
2 +
√
n lnn) ≤ e−(2

√
lnn)2/2 = n−2.

Likewise, Pr(Di <
n
2 −
√
n lnn) ≤ n−2.

By union bound, Pr(n2 −
√
n lnn ≤ Di ≤ n

2 −
√
n lnn for all i) ≥

1− 2(n+1)
n2 = 1−O( 1

n)
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Another generative model of random graphs

Gn,m
Randomly independently assign m edges among n vertices.
Equiv: All n-vertex m-edge graphs, uniformly distributed.

Proposed by Erdös&Rényi in 1959, and
independently by Austin, Fagen, Penney and Riordan in 1959.

Hard to study, due to dependency among edges.
Can we decouple the edges? Yes, sort of.

Decoupling the edges

Gn,m ∼ Gn,p|(m edges exist)
Recall the Poisson Approximation Theorem

Both are called Erdös-Rényi model.
Gn,p is more popular.
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Application of the decoupling

Probability of having isolated vertices

In random graph Gn,m with m = n lnn+cn
2 , the probability that

there is an isolated vertex converges to 1− e−e
−c

.

Proof (By myself)

Basically, follow the proof of the theorem about coupon collecting.
It is reduced to Gn,p with p = lnn+c

n .

Problem reduction

In Gn,p with p = lnn+c
n , the probability that there is an isolated

vertex converges to 1− e−e
−c

.
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Proof

Ei: the event that vertex vi is isolated in Gn,p.
E: the event that at least one vertex is isolated in Gn,p.
Pr(E) = Pr(∪ni=1Ei)

= −
∑n

k=1(−1)k
∑

1≤i1<i2<...<ik≤n Pr(∩kj=1Eij ).

By Bonferroni inequalities,
Pr(E) ≤ −

∑l
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∑
1≤i1<...<ik≤n Pr(∩kj=1Eij ), for odd l.

Pr(∩kj=1Eij ) = (1− p)(n−k)k+
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2 .
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Continued proof

For odd l

limn→∞ Pr(E) ≤ −
∑l

k=1
(−e−c)k

k! = 1−
∑l

k=0
(−e−c)k

k!

For even l, likewise

limn→∞ Pr(E) ≥ −
∑l

k=1
(−e−c)k

k! = 1−
∑l

k=0
(−e−c)k

k!

Altogether

Let l go to infinity. We have
limn→∞ Pr(E) = limn→∞ Pr(E) = 1− e−e

−c
.

So, limn→∞ Pr(E) = 1− e−e
−c

21 / 22



Reference

Lectures 12&13 of the CMU lecture notes by Ryan O’Donnell.
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