Probabilistic Method and Random Graphs Lecture 7. Random Graphs ¹

Xingwu Liu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

¹The slides are mainly based on Lecture 13 of Ryan O'Donnell's lecture notes of *Probability and Computing* and Chapter 5 of the textbook *Probability and Computing*.

Questions, comments, or suggestions?

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > = Ξ

2/18

A recap of Lecture 6

Hashing

- Hash table: accurate, time-efficient, space-inefficient
- Info. fingerprint: small error, time-inefficient, space-efficient
- Bloom filter: small error, time-efficient, more space-efficient

Random Grpahs

- Axiomatic definition
 - Uniform random graph \mathcal{G}_n
- Generated by stochastic processes
 - Playing super dice
 - Erdös-Rényi model $\mathcal{G}_{n,p}$ proposed by Gilbert
 - $\mathcal{G}_{n,rac{1}{2}}\sim\mathcal{G}_n$, statistics, homogeneity \cdots
 - Erdös-Rényi model $\mathcal{G}_{n,m}$
 - $\mathcal{G}_{n,m} \sim \mathcal{G}_{n,p} | (m \text{ edges exist})$

Reflection on $\mathcal{G}_{n,p}$

Homogeneity in degree

Degree of each vertex is Bin(n-1, p). Highly concentrated, as proven

Dense for constant p

 $m=\Theta(n^2)$ whp. Billions of vertices with zeta edges, too dense

Unfit for real-world networks

Heterogeneous in degree distribution. Sort of sparse

Remark

 $\mathcal{G}_{n,p}$ -type randomness does appear in big graphs

Szemerédi Regularity Lemma

Tool in extremal graph theory by Endre Szemerédi in 1970's

Hungarian-American (1940-) Doctor vs Mathematician Gelfond vs Gelfand

Szemerdi's Regularity Lemma

 $\forall \epsilon, m > 0, \exists M > m$ such that any graph G with at least M vertices has an ϵ -regular k-partition, where $\exists m \leq k \leq M$.

Remark

Every large enough graph can be partitioned into a bounded number of parts which pairwise are like random graphs.

When the graph has constant average degree

Consider a social network with average degree 150 (Dunbar's #). Let $p = \frac{150}{n}$. Does it work?

Too concentrated in degree

 $\begin{array}{l} D_i \sim {\rm Bin}(n-1,150/n) \approx {\rm Poi}(150). \\ {\rm Union \ bound \ implies \ concentration \ around \ 150.} \\ {\rm e.g. \ } {\rm Pr}(D_i \leq 25) \leq 25 \frac{e^{-150} 150^{25}}{25!} \approx 25 \times 10^{-36} < 10^{-34}. \end{array}$

Degree sequence of an n-vertex graph G

 $n_0, n_1, \dots n_n$ are integers. $n_i =$ number of vertices in G with degree exactly i. $\sum n_i = n, \sum i * n_i = 2m$

Random graphs with specified degree sequence

Introduced by Bela Bollobas around 1980.

Produced by a random process:

Step 1. Decide what degree each vertex will have.

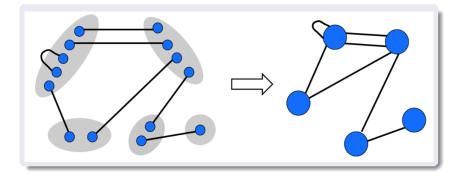
Step 2. Blow each vertex up into a group of 'mini-vertices'.

- Step 3. Uniformly randomly, perfectly match these vertices.
- Step 4. Merge each group into one vertex.

Finally, fix multiple edges and self-loops if you like

Example

$$n = 5, n_0 = 0, n_1 = 1, n_2 = 2, n_3 = 0, n_4 = 1, n_5 = 1$$



Other random graph models

Practical graphs are formed organically by "randomish" processes.

Preferential attachment model Propsed by Barabasi&Albert in 1999 Scale-free network First by Scottish statistician Udny Yule in 1925 to study plant evolution

Rewired ring model Propsed by Watts&Strogatz in 1998 Small world network



Threshold: the most striking phenomenon of random graphs. Extensively studied in the Erdös-Rényi model $\mathcal{G}_{n,p}$.

Threshold functions

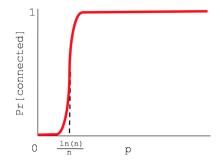
Given f(n) and event E, if E does not happen on $\mathcal{G}_{n,o(f)}$ whp but happens on $\mathcal{G}_{n,w(f)}$ whp, f(n) is a threshold function of E.

Sharp threshold functions

Given f(n) and event E, if E does not happen on $\mathcal{G}_{n,cf}$ whp for any c < 1 but happens whp for any c > 1, f(n) is a sharp threshold function of E.

Example

 $f(n) = \frac{\ln n}{n}$ is a sharp threshold function for connectivity.



 $f(n) = \frac{1}{n}$ is a sharp threshold function for giant component.

$$f(n) = \frac{1}{n}$$
 is a threshold function for cycles.

Application: Hamiltonian cycles in random graphs

Objective

Find a Hamiltonian cycle if it exists in a given graph. NP-complete, but ... Efficiently solvable w.h.p. for $\mathcal{G}_{n,p}$, when p is big enough.

How?

A simple algorithm (use adjacency list model):

- Initialize the path to be a vertex.
- repeatedly use an unused edge to extend or rotate the path until a Hamiltonian cycle is obtained or a failure is reached.

Performance

Running time $\leq \#$ edges \Rightarrow inaccurate. This does not matter if accurate w.h.p. Challenge: hard to analyze, due to dependency. Essentially, extending or rotating is to sample a vertex. If an unseen vertex is sampled, add it to the path. When all vertices are seen, a Hamiltonian path is obtained, and almost end.

Familiar? Yes! Coupon collecting. If we can modify the algorithm so that *sampling* at every step is uniformly random over all vertices, coupon collector problem results guarantee to find a Hamiltonian path in polynomial time. It is not so difficult to close the path.

Improvements

- Every step follows either unseen or seen edges, or reverse the path, with certain probability.
- Independent adjacency list (unused edges accessed by query), simplifying probabilistic analysis of random graphs

Modified Hamiltonian Cycle Algorithm

Under the independent adjacency list model

- Start with a randomly chosen vertex
- Repeat:
 - reverse the path with probability $\frac{1}{n}$
 - sample a used edge and rotate with probability $\frac{|used_edges|}{n}$
 - select the first unused edge with the rest probability
- Until a Hamiltonian cycle is found or FAIL(no unused edges)

An important fact

Let V_t be the head of the path after the t-th step. If the unused_edges list of the head at time t-1 is non-empty, $\Pr(V_t = u_t | V_{t-1} = u_{t-1}, ... V_0 = u_0) = \frac{1}{n}$ for $\forall u_i$.

Coupon collector results apply: If no unused edges lists are exhausted, a Hamiltonian path is found in $O(n \ln n)$ iterations w.h.p., and likewise for closing the path.

Theorem

If in the independent adjacency list model, each edge (u, v) appear on u's list with probability $q \geq \frac{20 \ln n}{n}$, The algorithm finds a Hamiltonian cycle in $O(n \ln n)$ iterations with probability $1 - O(\frac{1}{n})$.

Basic idea of the proof

 $\mathsf{Fail} \Rightarrow$

- \mathcal{E}_1 : no unused-edges list is exhausted in $3n \ln n$ steps but fail.
 - \mathcal{E}_{1a} : Fail to find a Hamiltonian path in $2n \ln n$ steps.
 - \mathcal{E}_{1b} : The Hamiltonian path does not get closed in $n \ln n$ steps.
- \mathcal{E}_2 : an unused-edges list is exhausted in $3n \ln n$ steps.
 - $\mathcal{E}_{2a}: \geq 9 \ln n$ unused edges of a vertex are removed in $3n \ln n$ steps.
 - \mathcal{E}_{2b} : a vertex initially has $< 10 \ln n$ unused edges.

\mathcal{E}_{1a} : Fail to find a Hamiltonian path in $2n\ln n$ steps

The probability that a specific vertex is not reached in $2n \ln n$ steps is $(1 - 1/n)^{2n \ln n} \le e^{-2 \ln n} = n^{-2}$. By the union bound, $\Pr(\mathcal{E}_{1a}) \le n^{-1}$.

\mathcal{E}_{1b} : The Hamiltonian path does not get closed in $n \ln n$ steps

Pr(close the path at a specific step) =
$$n^{-1}$$
.
 $\Rightarrow \Pr(\mathcal{E}_{1b}) = (1 - 1/n)^{n \ln n} \le e^{-\ln n} = n^{-1}$.

Proof: \mathcal{E}_{2a} and \mathcal{E}_{2b} have low probability

\mathcal{E}_{2a} : $\geq 9 \ln n$ unused edges of a vertex are removed in $3n \ln n$ steps

The number of edges removed from a vertex v's unused edges list \leq the number X of times that v is the head. $X \sim Bin(3n \ln n, n^{-1}) \Rightarrow \Pr(X \geq 9 \ln n) \leq (e^2/27)^{3 \ln n} \leq n^{-2}$. By the union bound, $\Pr(\mathcal{E}_{2a}) \leq n^{-1}$.

\mathcal{E}_{2b} : a vertex initially has $< 10 \ln n$ unused edges

Let Y be the number of initial unused edges of a specific vertex. $\mathbb{E}[Y] \ge (n-1)q \ge 20(n-1)\ln n/n \ge 19\ln n \text{ asymptotically.}$ Chernoff bounds $\Rightarrow \Pr(Y \le 10\ln n) \le e^{-19(9/19)^2\ln n/2} \le n^{-2}.$ Union bound $\Rightarrow \Pr(\mathcal{E}_{2b}) \le n^{-1}.$

Altogether

$$\Pr(fail) \le \Pr(\mathcal{E}_{1a}) + \Pr(\mathcal{E}_{1b}) + \Pr(\mathcal{E}_{2a}) + \Pr(\mathcal{E}_{2b}) \le \frac{4}{n}.$$

Corollary

The modified algorithm finds a Hamiltonian cycle on random graph $\mathcal{G}_{n,p}$ with probability $1 - O(\frac{1}{n})$ if $p \ge 40 \frac{\ln n}{n}$.

Proof

Define
$$q \in [0,1]$$
 be such that $p = 2q - q^2$. We have two facts:

• The independent adjacency list model with parameter q is equivalent to $\mathcal{G}_{n,p}$.

•
$$q \ge \frac{p}{2} \ge 20\frac{\ln n}{n}$$
.