Probabilistic Method and Random Graphs

Lecture 7. Random Graphs 1

Xingwu Liu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

!The slides are mainly based on Lecture 13 of Ryan O'Donnell’s lecture
notes of Probability and Computing and Chapter 5 of the textbook Probability

and Computing.
1/18



Questions, comments, or suggestions?

D¢
2/18



A recap of Lecture 6

@ Hash table: accurate, time-efficient, space-inefficient

@ Info. fingerprint: small error, time-inefficient, space-efficient

@ Bloom filter: small error, time-efficient, more space-efficient

v

Random Grpahs

@ Axiomatic definition

e Uniform random graph G,
o Generated by stochastic processes
e Playing super dice
o Erdos-Rényi model G,, , proposed by Gilbert
° gné ~ G, statistics, homogeneity - - -
o Erdos-Rényi model G,, .,
o Gnom ~ Gnpl(m edges exist)

3/18



Reflection on G, ,

Homogeneity in degree

Degree of each vertex is Bin(n — 1,p).
Highly concentrated, as proven

| A\

Dense for constant p

m = O(n?) whp.
Billions of vertices with zeta edges, too dense

Unfit for real-world networks

Heterogeneous in degree distribution.
Sort of sparse

Gn p-type randomness does appear in big graphs

4/18



Szemerédi Regularity Lemma

Tool in extremal Hungarian-American (1940-)
graph theory by Endre Doctor vs Mathematician
Szemerédi in 1970's Gelfond vs Gelfand

Szemerdi's Regularity Lemma

Ve, m > 0,3M > m such that any graph G with at least M
vertices has an e-regular k-partition, where 3m < k < M.

RENEILS

Every large enough graph

can be partitioned into a Q el
bounded number of parts () M=m"
which pairwise are like ‘. IS

random graphs. O Q

5/18



A tentative model for sparse graphs

When the graph has constant average degree

Consider a social network with average degree 150 (Dunbar's #).
Let p = 1—20. Does it work?

Too concentrated in degree

D; ~ Bin(n — 1,150/n) ~ Poi(150).

Union bound implies concentration around 150.
15015025

e.g. Pr(D; < 25) < 255—120= ~ 25 x 10736 < 10734,

6/18



Random graphs with a given degree sequence

Degree sequence of an n-vertex graph G

ng, N1, ...Ny are integers.
n; = number of vertices in G with degree exactly 1.
dYni=mn,> i%xn; =2m

| \

Random graphs with specified degree sequence

Introduced by Bela Bollobas around 1980.

Produced by a random process:

Step 1. Decide what degree each vertex will have.

Step 2. Blow each vertex up into a group of ‘mini-vertices'.
Step 3. Uniformly randomly, perfectly match these vertices.
Step 4. Merge each group into one vertex.

Finally, fix multiple edges and self-loops if you like

7/18



Example

n=5n=0n=1n=2n3=0n,=1n5=1 J

{2.-77.

v

8/18



Other random graph models

Practical graphs are formed organically by “randomish” processes.

Preferential attachment model

Propsed by Barabasi&Albert in 1999

Scale-free network

First by Scottish statistician Udny Yule
in 1925 to study plant evolution

Rewired ring model
Propsed by Watts&Strogatz in 1998
Small world network

9/18



Threshold phenomena

Threshold: the most striking phenomenon of random graphs.
Extensively studied in the Erdos-Rényi model G,, ,,.

Threshold functions

| A

Given f(n) and event E, if £/ does not happen on G, ,s) whp but
happens on G, () whp, f(n) is a threshold function of E.

| \

Sharp threshold functions

Given f(n) and event E, if E does not happen on G,, .y whp for
any ¢ < 1 but happens whp for any ¢ > 1, f(n) is a sharp
threshold function of E.

10/18



f(n) =27 is a sharp threshold function for connectivity.
1
)
0]
]
O
9]
@}
@
o]
2
& |
A 1
1
1
0 lnn(n) o

f(n) = L is a sharp threshold function for giant component.

|[=

f(n) = - is a threshold function for cycles.

11/18



Application: Hamiltonian cycles in random graphs

Objective

Find a Hamiltonian cycle if it exists in a given graph.
NP-complete, but ...
Efficiently solvable w.h.p. for G,, ,, when p is big enough.

How?

A simple algorithm (use adjacency list model):

@ Initialize the path to be a vertex.

@ repeatedly use an unused edge to extend or rotate the path
until a Hamiltonian cycle is obtained or a failure is reached.

Performance

| A

Running time < #edges = inaccurate.
This does not matter if accurate w.h.p.
Challenge: hard to analyze, due to dependency.

A

12/18



A closer look at the algorithm

Essentially, extending or rotating is to sample a vertex.If an unseen
vertex is sampled, add it to the path. When all vertices are seen, a
Hamiltonian path is obtained, and almost end.

Familiar? Yes! Coupon collecting.

If we can modify the algorithm so that sampling at every step is
uniformly random over all vertices, coupon collector problem
results guarantee to find a Hamiltonian path in polynomial time. It
is not so difficult to close the path.

Improvements

@ Every step follows either unseen or seen edges, or reverse the
path, with certain probability.

@ Independent adjacency list (unused edges accessed by query),
simplifying probabilistic analysis of random graphs

13/18



Modified Hamiltonian Cycle Algorithm

Under the independent adjacency list model

@ Start with a randomly chosen vertex
@ Repeat:
o reverse the path with probability -

e sample a used edge and rotate with probability M

e select the first unused edge with the rest probability

e Until a Hamiltonian cycle is found or FAIL(no unused edges)

An important fact

Let V; be the head of the path after the t-th step. If the
unused_edges list of the head at time ¢ — 1 is non-empty,
Pr(Vi = w|Vie1 = ug—1, .. Vo = ug) = % for Vu;.

Coupon collector results apply: If no unused edges lists are
exhausted, a Hamiltonian path is found in O(nInn) iterations
w.h.p., and likewise for closing the path.

14 /18



Performance and Efficiency

Theorem

If in the independent adjacency list model, each edge (u,v) appear
on u's list with probability ¢ > 222" The algorithm finds a
Hamiltonian cycle in O(nInn) iterations with probability 1 — O(2).

Basic idea of the proof
Fail =

@ &1: no unused-edges list is exhausted in 3nlnn steps but fail.

e &1, Fail to find a Hamiltonian path in 2n1nn steps.
e &1p: The Hamiltonian path does not get closed in nlnn steps.

@ &: an unused-edges list is exhausted in 3nlnn steps.

o &1 > 9Inn unused edges of a vertex are removed in 3nlnn
steps.

o &Eop: a vertex initially has < 10Inn unused edges.

15/18



Proof: &, and &, have low probability

&14: Fail to find a Hamiltonian path in 2nInn steps

The probability that a specific vertex is not reached in 2nlnn
steps is (1 — 1/n)2nInn < g=2Inn — =2
By the union bound, Pr(&,) < n~!.

v

&E1p: The Hamiltonian path does not get closed in nlnn steps

Pr(close the path at a specific step) = n~!.

= Pr(&p) = (1 — 1/n)*2n < e~lan = =1

16/18



Proof: &, and &y have low probability

E2q: > 91Inn unused edges of a vertex are removed in 3nInn steps

The number of edges removed from a vertex v's unused edges list
< the number X of times that v is the head.

X ~ Bin(3nlnn,n™!) = Pr(X > 9Inn) < (€2/27)312" < n=2,
By the union bound, Pr(&s,) < n~L.

| A

Egp: a vertex initially has < 101Inn unused edges

Let Y be the number of initial unused edges of a specific vertex.
E[Y] > (n—1)g > 20(n — 1)Inn/n > 191nn asymptotically.
Chernoff bounds = Pr(Y < 10Inn) < e~19(9/19)*Inn/2 <n 2
Union bound = Pr(&y) < n~!.

Altogether
Pr(fail) < Pr(&1a) + Pr(&1p) + Pr(&2q) + Pr(&y) < %.

17/18



The algorithm on random graph G, ,,

Corollary

The modified algorithm finds a Hamiltonian cycle on random graph
Gn.p with probability 1 — O(1) if p > 4022,

Proof

Define ¢ € [0,1] be such that p = 2¢q — ¢°.
We have two facts:

| \

@ The independent adjacency list model with parameter g is
equivalent to G, .

° g>2>20kn

A\

18/18



