hw 8

Fanda Fan

December 2019

Q1 Solution:

We have

$$E[|S|] \ge \sum \frac{1}{d(u)+1} \ge \frac{|V|}{D+1}$$
 and $p = Pr(X \ge \frac{|V|}{D+1})$,

and

$$\begin{split} E[|S|] &= \sum\nolimits_{i=1}^{\frac{|V|}{D+1}-1} Pr(|S|=i)i + \sum\nolimits_{i=\frac{|V|}{D+1}}^{|V|} Pr(|S|=i)i \\ &\leq (1-p) \big(\frac{|V|}{D+1}-1\big) + p|V|. \end{split}$$

Then, we get

$$p \ge \frac{1}{1 + \frac{D|V|}{D+1}}.$$

Using

$$D = \frac{2|E|}{|V|},$$

the rest will be easy.

Q3 Solution:

(1) We use X_i denotes i-th K_4 is monochromatic, and $X = \sum X_i$ denotes the number of monochromatic K_4 . Then we have

$$E[\sum_{i=1}^{C_n^4} X_i] = \sum_{i=1}^{C_n^4} E[X_i] = C_n^4 2^{-5}.$$

Combined with $Pr(X \leq E[X]) > 0$, end of proof. (2)

$$\begin{split} E[X] &= \sum Pr(X=i) \cdot i \\ &= \sum\nolimits_{i=1}^{C_n^4 2^{-5}} Pr(X=i) \cdot i + \sum\nolimits_{i=C_n^4 2^{-5}+1}^{C_n^4} Pr(X=i) \cdot i \end{split}$$